在多个设备上编排多个数据并行内核

Janghaeng Lee, M. Samadi, S. Mahlke
{"title":"在多个设备上编排多个数据并行内核","authors":"Janghaeng Lee, M. Samadi, S. Mahlke","doi":"10.1109/PACT.2015.14","DOIUrl":null,"url":null,"abstract":"Traditionally, programmers and software tools have focused on mapping a single data-parallel kernel onto a heterogeneous computing system consisting of multiple general-purpose processors (CPUS) and graphics processing units (GPUs). These methodologies break down as application complexity grows to contain multiple communicating data-parallel kernels. This paper introduces MKMD, an automatic system for mapping multiple kernels across multiple computing devices in a seamless manner. MKMD is a two phased approach that combines coarse grain scheduling of indivisible kernels followed by opportunistic fine-grained workgroup-level partitioning to exploit idle resources. During this process, MKMD considers kernel dependencies and the underlying systems along with the execution time model built with a few sets of profile data. With the scheduling decision, MKMD transparently manages the order of executions and data transfers for each device. On a real machine with one CPU and two different GPUs, MKMD achieves a mean speedup of 1.89x compared to the in-order execution on the fastest device for a set of applications with multiple kernels. 53% of this speedup comes from the coarse-grained scheduling and the other 47% is the result of the fine-grained partitioning.","PeriodicalId":385398,"journal":{"name":"2015 International Conference on Parallel Architecture and Compilation (PACT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Orchestrating Multiple Data-Parallel Kernels on Multiple Devices\",\"authors\":\"Janghaeng Lee, M. Samadi, S. Mahlke\",\"doi\":\"10.1109/PACT.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, programmers and software tools have focused on mapping a single data-parallel kernel onto a heterogeneous computing system consisting of multiple general-purpose processors (CPUS) and graphics processing units (GPUs). These methodologies break down as application complexity grows to contain multiple communicating data-parallel kernels. This paper introduces MKMD, an automatic system for mapping multiple kernels across multiple computing devices in a seamless manner. MKMD is a two phased approach that combines coarse grain scheduling of indivisible kernels followed by opportunistic fine-grained workgroup-level partitioning to exploit idle resources. During this process, MKMD considers kernel dependencies and the underlying systems along with the execution time model built with a few sets of profile data. With the scheduling decision, MKMD transparently manages the order of executions and data transfers for each device. On a real machine with one CPU and two different GPUs, MKMD achieves a mean speedup of 1.89x compared to the in-order execution on the fastest device for a set of applications with multiple kernels. 53% of this speedup comes from the coarse-grained scheduling and the other 47% is the result of the fine-grained partitioning.\",\"PeriodicalId\":385398,\"journal\":{\"name\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

传统上,程序员和软件工具关注于将单个数据并行内核映射到由多个通用处理器(cpu)和图形处理单元(gpu)组成的异构计算系统。随着应用程序复杂性的增长,这些方法会分解为包含多个通信数据并行内核。本文介绍了MKMD,一个在多个计算设备上无缝映射多个内核的自动系统。MKMD是一种分两阶段的方法,它结合了不可分割内核的粗粒度调度和机会性的细粒度工作组级分区来利用空闲资源。在此过程中,MKMD考虑内核依赖关系和底层系统,以及使用几组配置文件数据构建的执行时间模型。通过调度决策,MKMD透明地管理每个设备的执行顺序和数据传输。在一台具有一个CPU和两个不同gpu的真实机器上,对于一组具有多个内核的应用程序,与在最快的设备上按顺序执行相比,MKMD实现了1.89倍的平均加速。这种加速的53%来自粗粒度调度,另外47%是细粒度分区的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orchestrating Multiple Data-Parallel Kernels on Multiple Devices
Traditionally, programmers and software tools have focused on mapping a single data-parallel kernel onto a heterogeneous computing system consisting of multiple general-purpose processors (CPUS) and graphics processing units (GPUs). These methodologies break down as application complexity grows to contain multiple communicating data-parallel kernels. This paper introduces MKMD, an automatic system for mapping multiple kernels across multiple computing devices in a seamless manner. MKMD is a two phased approach that combines coarse grain scheduling of indivisible kernels followed by opportunistic fine-grained workgroup-level partitioning to exploit idle resources. During this process, MKMD considers kernel dependencies and the underlying systems along with the execution time model built with a few sets of profile data. With the scheduling decision, MKMD transparently manages the order of executions and data transfers for each device. On a real machine with one CPU and two different GPUs, MKMD achieves a mean speedup of 1.89x compared to the in-order execution on the fastest device for a set of applications with multiple kernels. 53% of this speedup comes from the coarse-grained scheduling and the other 47% is the result of the fine-grained partitioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage Consolidation on SSDs: Not Always a Panacea, but Can We Ease the Pain? AREP: Adaptive Resource Efficient Prefetching for Maximizing Multicore Performance NVMMU: A Non-volatile Memory Management Unit for Heterogeneous GPU-SSD Architectures Scalable Task Scheduling and Synchronization Using Hierarchical Effects Scalable SIMD-Efficient Graph Processing on GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1