利用质心测量准则增强具有合格增强数据的软传感器

Yun Dai, Qing Yu, Tao Yang, Yuan Yao, Yi Liu
{"title":"利用质心测量准则增强具有合格增强数据的软传感器","authors":"Yun Dai, Qing Yu, Tao Yang, Yuan Yao, Yi Liu","doi":"10.1109/ICCSS53909.2021.9721987","DOIUrl":null,"url":null,"abstract":"Development of reliable soft sensors using limited labeled samples is not an easy task in industrial processes. A selective generative adversarial network (SGAN)-based support vector regression (SGAN-SVR) soft sensor is proposed for quality prediction using limited labeled training data. Specifically, SVR is considered as a base prediction model. The Wasserstein GAN (WGAN) is adopted to capture the distribution of available labeled data and generate virtual candidates. Subsequently, using a proposed similarity measurement strategy, those synthetic data with more information are selected and introduced into the training set. Using the designed data augmentation approach, the SGAN-SVR model can achieve better prediction performance compared with the SVR soft sensor. The quality prediction results on an industrial polyethylene process demonstrate the effectiveness and advantages of the proposed method.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Soft Sensor with Qualified Augmented Data Using Centroid Measurement Criterion\",\"authors\":\"Yun Dai, Qing Yu, Tao Yang, Yuan Yao, Yi Liu\",\"doi\":\"10.1109/ICCSS53909.2021.9721987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of reliable soft sensors using limited labeled samples is not an easy task in industrial processes. A selective generative adversarial network (SGAN)-based support vector regression (SGAN-SVR) soft sensor is proposed for quality prediction using limited labeled training data. Specifically, SVR is considered as a base prediction model. The Wasserstein GAN (WGAN) is adopted to capture the distribution of available labeled data and generate virtual candidates. Subsequently, using a proposed similarity measurement strategy, those synthetic data with more information are selected and introduced into the training set. Using the designed data augmentation approach, the SGAN-SVR model can achieve better prediction performance compared with the SVR soft sensor. The quality prediction results on an industrial polyethylene process demonstrate the effectiveness and advantages of the proposed method.\",\"PeriodicalId\":435816,\"journal\":{\"name\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS53909.2021.9721987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9721987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在工业过程中,使用有限的标记样品开发可靠的软传感器并不是一件容易的事。提出了一种基于选择性生成对抗网络(SGAN)的支持向量回归(SGAN- svr)软传感器,用于有限标记训练数据的质量预测。具体来说,SVR被认为是一个基本的预测模型。采用Wasserstein GAN (WGAN)捕获可用标记数据的分布并生成虚拟候选数据。然后,使用提出的相似度度量策略,选择具有更多信息的合成数据并将其引入训练集。采用设计的数据增强方法,与SVR软传感器相比,SGAN-SVR模型具有更好的预测性能。对某工业聚乙烯生产过程的质量预测结果表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Soft Sensor with Qualified Augmented Data Using Centroid Measurement Criterion
Development of reliable soft sensors using limited labeled samples is not an easy task in industrial processes. A selective generative adversarial network (SGAN)-based support vector regression (SGAN-SVR) soft sensor is proposed for quality prediction using limited labeled training data. Specifically, SVR is considered as a base prediction model. The Wasserstein GAN (WGAN) is adopted to capture the distribution of available labeled data and generate virtual candidates. Subsequently, using a proposed similarity measurement strategy, those synthetic data with more information are selected and introduced into the training set. Using the designed data augmentation approach, the SGAN-SVR model can achieve better prediction performance compared with the SVR soft sensor. The quality prediction results on an industrial polyethylene process demonstrate the effectiveness and advantages of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1