索引数据块上的项集挖掘

Elena Baralis, T. Cerquitelli, S. Chiusano
{"title":"索引数据块上的项集挖掘","authors":"Elena Baralis, T. Cerquitelli, S. Chiusano","doi":"10.1109/IS.2006.348526","DOIUrl":null,"url":null,"abstract":"This paper presents a novel index, called I-Forest, to support data mining activities on evolving databases, whose content is periodically updated through insertion (or deletion) of data blocks. I-Forest allows the extraction of itemsets from transactional databases such as transactional data from large retail chains. Item, support and time constraints may be enforced during the extraction phase. The proposed index is a covering index that represents transactional blocks in a succinct form and allows different kinds of analysis (e.g., analyze quarterly data). During the creation phase no support constraint is enforced. Thus, the index provides a complete representation of the evolving data. The I-Forest index has been implemented Into the Post-greSQL open source DBMS and exploits its physical level access methods. Experiments have been run for both sparse and dense data distributions. The execution time of the frequent itemset extraction task exploiting the index is always comparable with and for low support threshold faster than the Prefix-Tree algorithm accessing static data on at file","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Itemset Mining on Indexed Data Blocks\",\"authors\":\"Elena Baralis, T. Cerquitelli, S. Chiusano\",\"doi\":\"10.1109/IS.2006.348526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel index, called I-Forest, to support data mining activities on evolving databases, whose content is periodically updated through insertion (or deletion) of data blocks. I-Forest allows the extraction of itemsets from transactional databases such as transactional data from large retail chains. Item, support and time constraints may be enforced during the extraction phase. The proposed index is a covering index that represents transactional blocks in a succinct form and allows different kinds of analysis (e.g., analyze quarterly data). During the creation phase no support constraint is enforced. Thus, the index provides a complete representation of the evolving data. The I-Forest index has been implemented Into the Post-greSQL open source DBMS and exploits its physical level access methods. Experiments have been run for both sparse and dense data distributions. The execution time of the frequent itemset extraction task exploiting the index is always comparable with and for low support threshold faster than the Prefix-Tree algorithm accessing static data on at file\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的索引,称为I-Forest,用于支持在不断发展的数据库上的数据挖掘活动,该数据库的内容通过插入(或删除)数据块进行定期更新。I-Forest允许从事务性数据库(如大型零售连锁店的事务性数据)中提取项目集。项目、支持和时间限制可能在提取阶段被强制执行。提议的索引是一个覆盖索引,它以简洁的形式表示事务块,并允许不同类型的分析(例如,分析季度数据)。在创建阶段,不强制支持约束。因此,索引提供了不断变化的数据的完整表示。I-Forest索引已经被实现到Post-greSQL开源DBMS中,并利用了它的物理层访问方法。实验已经运行了稀疏和密集的数据分布。利用索引的频繁项集提取任务的执行时间总是与访问文件上的静态数据的前缀树算法相当,并且在支持阈值较低的情况下,执行时间比使用前缀树算法更快
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Itemset Mining on Indexed Data Blocks
This paper presents a novel index, called I-Forest, to support data mining activities on evolving databases, whose content is periodically updated through insertion (or deletion) of data blocks. I-Forest allows the extraction of itemsets from transactional databases such as transactional data from large retail chains. Item, support and time constraints may be enforced during the extraction phase. The proposed index is a covering index that represents transactional blocks in a succinct form and allows different kinds of analysis (e.g., analyze quarterly data). During the creation phase no support constraint is enforced. Thus, the index provides a complete representation of the evolving data. The I-Forest index has been implemented Into the Post-greSQL open source DBMS and exploits its physical level access methods. Experiments have been run for both sparse and dense data distributions. The execution time of the frequent itemset extraction task exploiting the index is always comparable with and for low support threshold faster than the Prefix-Tree algorithm accessing static data on at file
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1