位置感知Bruck集合

Amanda Bienz, Shreemant Gautam, Amun Kharel
{"title":"位置感知Bruck集合","authors":"Amanda Bienz, Shreemant Gautam, Amun Kharel","doi":"10.1145/3555819.3555825","DOIUrl":null,"url":null,"abstract":"Collective algorithms are an essential part of MPI, allowing application programmers to utilize underlying optimizations of common distributed operations. The MPI_Allgather gathers data, which is originally distributed across all processes, so that all data is available to each process. For small data sizes, the Bruck algorithm is commonly implemented to minimize the maximum number of messages communicated by any process. However, the cost of each step of communication is dependent upon the relative locations of source and destination processes, with non-local messages, such as inter-node, significantly more costly than local messages, such as intra-node. This paper optimizes the Bruck algorithm with locality-awareness, minimizing the number and size of non-local messages to improve performance and scalability of the allgather operation.","PeriodicalId":423846,"journal":{"name":"Proceedings of the 29th European MPI Users' Group Meeting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Locality-Aware Bruck Allgather\",\"authors\":\"Amanda Bienz, Shreemant Gautam, Amun Kharel\",\"doi\":\"10.1145/3555819.3555825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collective algorithms are an essential part of MPI, allowing application programmers to utilize underlying optimizations of common distributed operations. The MPI_Allgather gathers data, which is originally distributed across all processes, so that all data is available to each process. For small data sizes, the Bruck algorithm is commonly implemented to minimize the maximum number of messages communicated by any process. However, the cost of each step of communication is dependent upon the relative locations of source and destination processes, with non-local messages, such as inter-node, significantly more costly than local messages, such as intra-node. This paper optimizes the Bruck algorithm with locality-awareness, minimizing the number and size of non-local messages to improve performance and scalability of the allgather operation.\",\"PeriodicalId\":423846,\"journal\":{\"name\":\"Proceedings of the 29th European MPI Users' Group Meeting\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th European MPI Users' Group Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555819.3555825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555819.3555825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

集合算法是MPI的重要组成部分,它允许应用程序程序员利用常见分布式操作的底层优化。MPI_Allgather收集数据,这些数据最初分布在所有进程中,因此每个进程都可以使用所有数据。对于小数据量,通常实现Bruck算法以最小化任何进程通信的最大消息数。然而,通信的每个步骤的成本取决于源进程和目标进程的相对位置,非本地消息(如节点间)的成本明显高于本地消息(如节点内)。本文利用位置感知对Bruck算法进行优化,最大限度地减少非本地消息的数量和大小,以提高allgather操作的性能和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Locality-Aware Bruck Allgather
Collective algorithms are an essential part of MPI, allowing application programmers to utilize underlying optimizations of common distributed operations. The MPI_Allgather gathers data, which is originally distributed across all processes, so that all data is available to each process. For small data sizes, the Bruck algorithm is commonly implemented to minimize the maximum number of messages communicated by any process. However, the cost of each step of communication is dependent upon the relative locations of source and destination processes, with non-local messages, such as inter-node, significantly more costly than local messages, such as intra-node. This paper optimizes the Bruck algorithm with locality-awareness, minimizing the number and size of non-local messages to improve performance and scalability of the allgather operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Acceleration of Adhesive Dynamics Simulations Applying on Node Aggregation Methods to MPI Alltoall Collectives: Matrix Block Aggregation Algorithm Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning Enabling Global MPI Process Addressing in MPI Applications Towards a Hybrid MPI Correctness Benchmark Suite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1