{"title":"分类器评估的差分隐私","authors":"Kendrick Boyd, Eric Lantz, David Page","doi":"10.1145/2808769.2808775","DOIUrl":null,"url":null,"abstract":"Differential privacy provides powerful guarantees that individuals incur minimal additional risk by including their personal data in a database. Most work in differential privacy has focused on differentially private algorithms that produce models, counts, and histograms. Nevertheless, even with a classification model produced by a differentially private algorithm, directly reporting the classifier's performance on a database has the potential for disclosure. Thus, differentially private computation of evaluation metrics for machine learning is an important research area. We find effective mechanisms for area under the receiver-operating characteristic (ROC) curve and average precision.","PeriodicalId":426614,"journal":{"name":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Differential Privacy for Classifier Evaluation\",\"authors\":\"Kendrick Boyd, Eric Lantz, David Page\",\"doi\":\"10.1145/2808769.2808775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential privacy provides powerful guarantees that individuals incur minimal additional risk by including their personal data in a database. Most work in differential privacy has focused on differentially private algorithms that produce models, counts, and histograms. Nevertheless, even with a classification model produced by a differentially private algorithm, directly reporting the classifier's performance on a database has the potential for disclosure. Thus, differentially private computation of evaluation metrics for machine learning is an important research area. We find effective mechanisms for area under the receiver-operating characteristic (ROC) curve and average precision.\",\"PeriodicalId\":426614,\"journal\":{\"name\":\"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808769.2808775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808769.2808775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential privacy provides powerful guarantees that individuals incur minimal additional risk by including their personal data in a database. Most work in differential privacy has focused on differentially private algorithms that produce models, counts, and histograms. Nevertheless, even with a classification model produced by a differentially private algorithm, directly reporting the classifier's performance on a database has the potential for disclosure. Thus, differentially private computation of evaluation metrics for machine learning is an important research area. We find effective mechanisms for area under the receiver-operating characteristic (ROC) curve and average precision.