MARS:多语言推荐系统

HetRec '10 Pub Date : 2010-09-26 DOI:10.1145/1869446.1869450
P. Lops, C. Musto, F. Narducci, Marco de Gemmis, Pierpaolo Basile, G. Semeraro
{"title":"MARS:多语言推荐系统","authors":"P. Lops, C. Musto, F. Narducci, Marco de Gemmis, Pierpaolo Basile, G. Semeraro","doi":"10.1145/1869446.1869450","DOIUrl":null,"url":null,"abstract":"The exponential growth of the Web is the most influential factor that contributes to the increasing importance of cross-lingual text retrieval and filtering systems. Indeed, relevant information exists in different languages, thus users need to find documents in languages different from the one the query is formulated in. In this context, an emerging requirement is to sift through the increasing flood of multilingual text: this poses a renewed challenge for designing effective multilingual Information Filtering systems.\n In this paper, we propose a language-independent content-based recommender system, called MARS (MultilAnguage Recommender System), that builds cross-language user profiles, by shifting the traditional text representation based on keywords, to a more complex language-independent representation based on word meanings. As a consequence, the recommender system is able to suggest items represented in a language different from the one used in the content-based user profile.\n Experiments conducted in a movie recommendation scenario show the effectiveness of the approach.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"MARS: a MultilAnguage Recommender System\",\"authors\":\"P. Lops, C. Musto, F. Narducci, Marco de Gemmis, Pierpaolo Basile, G. Semeraro\",\"doi\":\"10.1145/1869446.1869450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential growth of the Web is the most influential factor that contributes to the increasing importance of cross-lingual text retrieval and filtering systems. Indeed, relevant information exists in different languages, thus users need to find documents in languages different from the one the query is formulated in. In this context, an emerging requirement is to sift through the increasing flood of multilingual text: this poses a renewed challenge for designing effective multilingual Information Filtering systems.\\n In this paper, we propose a language-independent content-based recommender system, called MARS (MultilAnguage Recommender System), that builds cross-language user profiles, by shifting the traditional text representation based on keywords, to a more complex language-independent representation based on word meanings. As a consequence, the recommender system is able to suggest items represented in a language different from the one used in the content-based user profile.\\n Experiments conducted in a movie recommendation scenario show the effectiveness of the approach.\",\"PeriodicalId\":258506,\"journal\":{\"name\":\"HetRec '10\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HetRec '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869446.1869450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869446.1869450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

网络的指数级增长是跨语言文本检索和过滤系统日益重要的最具影响力的因素。事实上,相关信息存在于不同的语言中,因此用户需要查找不同于表述查询的语言的文档。在这种情况下,一个新出现的需求是筛选越来越多的多语言文本:这对设计有效的多语言信息过滤系统提出了新的挑战。在本文中,我们提出了一个独立于语言的基于内容的推荐系统,称为MARS(多语言推荐系统),它通过将传统的基于关键字的文本表示转换为更复杂的基于词义的独立于语言的表示来构建跨语言的用户配置文件。因此,推荐系统能够推荐用不同于基于内容的用户配置文件中使用的语言表示的项目。在电影推荐场景中进行的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MARS: a MultilAnguage Recommender System
The exponential growth of the Web is the most influential factor that contributes to the increasing importance of cross-lingual text retrieval and filtering systems. Indeed, relevant information exists in different languages, thus users need to find documents in languages different from the one the query is formulated in. In this context, an emerging requirement is to sift through the increasing flood of multilingual text: this poses a renewed challenge for designing effective multilingual Information Filtering systems. In this paper, we propose a language-independent content-based recommender system, called MARS (MultilAnguage Recommender System), that builds cross-language user profiles, by shifting the traditional text representation based on keywords, to a more complex language-independent representation based on word meanings. As a consequence, the recommender system is able to suggest items represented in a language different from the one used in the content-based user profile. Experiments conducted in a movie recommendation scenario show the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving the effectiveness of collaborative recommendation with ontology-based user profiles A user meta-model for context-aware recommender systems Cross-lingual keyword recommendation using latent topics Geographical recommender system based on interaction between map operation and category selection User data distributed on the social web: how to identify users on different social systems and collecting data about them
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1