基于三重学习的深度点云法向估计(演示)

Weijia Wang, Xuequan Lu, Dasith de Silva Edirimuni, Xiao Liu, A. Robles-Kelly
{"title":"基于三重学习的深度点云法向估计(演示)","authors":"Weijia Wang, Xuequan Lu, Dasith de Silva Edirimuni, Xiao Liu, A. Robles-Kelly","doi":"10.1109/ICMEW56448.2022.9859360","DOIUrl":null,"url":null,"abstract":"In this demonstration paper, we show the technical details of our proposed triplet learning-based point cloud normal estimation method. Our network architecture consists of two phases: (a) feature encoding to learn representations of local patches, and (b) normal estimation that takes the learned representations as input to regress normals. We are motivated that local patches on isotropic and anisotropic surfaces respectively have similar and distinct normals, and these separable representations can be learned to facilitate normal estimation. Experiments show that our method preserves sharp features and achieves good normal estimation results especially on computer-aided design (CAD) shapes.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Point Cloud Normal Estimation via Triplet Learning (Demonstration)\",\"authors\":\"Weijia Wang, Xuequan Lu, Dasith de Silva Edirimuni, Xiao Liu, A. Robles-Kelly\",\"doi\":\"10.1109/ICMEW56448.2022.9859360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demonstration paper, we show the technical details of our proposed triplet learning-based point cloud normal estimation method. Our network architecture consists of two phases: (a) feature encoding to learn representations of local patches, and (b) normal estimation that takes the learned representations as input to regress normals. We are motivated that local patches on isotropic and anisotropic surfaces respectively have similar and distinct normals, and these separable representations can be learned to facilitate normal estimation. Experiments show that our method preserves sharp features and achieves good normal estimation results especially on computer-aided design (CAD) shapes.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇演示论文中,我们展示了我们提出的基于三重学习的点云正态估计方法的技术细节。我们的网络架构由两个阶段组成:(a)特征编码以学习局部补丁的表示,以及(b)正态估计,将学习到的表示作为输入以回归正态。我们的动机是,各向同性和各向异性表面上的局部斑块分别具有相似和不同的法线,并且这些可分离的表示可以学习以促进法线估计。实验表明,该方法保留了图像的鲜明特征,并取得了较好的正态估计效果,特别是在计算机辅助设计(CAD)形状上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Point Cloud Normal Estimation via Triplet Learning (Demonstration)
In this demonstration paper, we show the technical details of our proposed triplet learning-based point cloud normal estimation method. Our network architecture consists of two phases: (a) feature encoding to learn representations of local patches, and (b) normal estimation that takes the learned representations as input to regress normals. We are motivated that local patches on isotropic and anisotropic surfaces respectively have similar and distinct normals, and these separable representations can be learned to facilitate normal estimation. Experiments show that our method preserves sharp features and achieves good normal estimation results especially on computer-aided design (CAD) shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1