Z. Smanova, T. Rakhimov, M. Mukhamediev, D. Gafurova, Dilbar A. Shaxidova
{"title":"功能活性纳米颗粒边界尺寸的计算","authors":"Z. Smanova, T. Rakhimov, M. Mukhamediev, D. Gafurova, Dilbar A. Shaxidova","doi":"10.4018/IJANR.20200101.OA1","DOIUrl":null,"url":null,"abstract":"Size is a key characteristic of nanoparticles that determines whether the objects belong to this category. Currently, there are not enough experiments on materials of the same chemical composition but of different dispersion in particle size, with equal size of the particles or grains of each sample of material investigated. In the present article, the authors show that the effect of the dispersion of the particle size determines whether the size dependence of a specific property can be calculated alternatively to the direct measurements. By finding the correlations between nano-properties and content of nanoparticles' fractions of different sizes, the boundary conditions can be calculated.","PeriodicalId":322245,"journal":{"name":"International Journal of Applied Nanotechnology Research","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the Boundary Dimensions of Functionally Active Nanoparticles\",\"authors\":\"Z. Smanova, T. Rakhimov, M. Mukhamediev, D. Gafurova, Dilbar A. Shaxidova\",\"doi\":\"10.4018/IJANR.20200101.OA1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Size is a key characteristic of nanoparticles that determines whether the objects belong to this category. Currently, there are not enough experiments on materials of the same chemical composition but of different dispersion in particle size, with equal size of the particles or grains of each sample of material investigated. In the present article, the authors show that the effect of the dispersion of the particle size determines whether the size dependence of a specific property can be calculated alternatively to the direct measurements. By finding the correlations between nano-properties and content of nanoparticles' fractions of different sizes, the boundary conditions can be calculated.\",\"PeriodicalId\":322245,\"journal\":{\"name\":\"International Journal of Applied Nanotechnology Research\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Nanotechnology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJANR.20200101.OA1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Nanotechnology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJANR.20200101.OA1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculation of the Boundary Dimensions of Functionally Active Nanoparticles
Size is a key characteristic of nanoparticles that determines whether the objects belong to this category. Currently, there are not enough experiments on materials of the same chemical composition but of different dispersion in particle size, with equal size of the particles or grains of each sample of material investigated. In the present article, the authors show that the effect of the dispersion of the particle size determines whether the size dependence of a specific property can be calculated alternatively to the direct measurements. By finding the correlations between nano-properties and content of nanoparticles' fractions of different sizes, the boundary conditions can be calculated.