基于离散Hopfield神经网络的退化特征点图像恢复

K. Yuasa, H. Sawai, M. Yoneyama
{"title":"基于离散Hopfield神经网络的退化特征点图像恢复","authors":"K. Yuasa, H. Sawai, M. Yoneyama","doi":"10.1109/DSPWS.1996.555517","DOIUrl":null,"url":null,"abstract":"In order to estimate the image restoration capability of discrete type Hopfield neural network having an associative memory effect, some simulation experiments were performed. The memorized patterns to the network are binary dot alphabet capital characters consisting of 10/spl times/10 pixels. On the other hand, artificially degraded binary dot patterns of those original characters are used as the input patterns for the neural network to recall the original characters. As a result, the rate of success to recall the correct pattern is strongly related to both degradation degree of input patterns and number of patterns previously memorized in the network.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Restoration of degraded character dot image using discrete Hopfield neural network\",\"authors\":\"K. Yuasa, H. Sawai, M. Yoneyama\",\"doi\":\"10.1109/DSPWS.1996.555517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to estimate the image restoration capability of discrete type Hopfield neural network having an associative memory effect, some simulation experiments were performed. The memorized patterns to the network are binary dot alphabet capital characters consisting of 10/spl times/10 pixels. On the other hand, artificially degraded binary dot patterns of those original characters are used as the input patterns for the neural network to recall the original characters. As a result, the rate of success to recall the correct pattern is strongly related to both degradation degree of input patterns and number of patterns previously memorized in the network.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了评估具有联想记忆效应的离散型Hopfield神经网络的图像恢复能力,进行了仿真实验。存储到网络的模式是由10/spl倍/10像素组成的二进制点字母大写字符。另一方面,将原始字符的人工降级的二值点模式作为神经网络的输入模式来召回原始字符。因此,回忆正确模式的成功率与输入模式的退化程度和网络中先前记忆的模式数量密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restoration of degraded character dot image using discrete Hopfield neural network
In order to estimate the image restoration capability of discrete type Hopfield neural network having an associative memory effect, some simulation experiments were performed. The memorized patterns to the network are binary dot alphabet capital characters consisting of 10/spl times/10 pixels. On the other hand, artificially degraded binary dot patterns of those original characters are used as the input patterns for the neural network to recall the original characters. As a result, the rate of success to recall the correct pattern is strongly related to both degradation degree of input patterns and number of patterns previously memorized in the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multirate modeling of human ear frequency resolution for hearing aids An OFDM spread spectrum system using lapped transforms and partial band interference suppression Spectral extrapolation in sub-band coding Memory efficient list based Hough transform for programmable digital signal processors with on-chip caches Towards a system for segmentation under noisy conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1