利用高光谱数据和加权K-NN方法估算土壤重金属浓度

Weibo Ma, Kun Tan, Q. Du, Jianwei Ding, Qingwu Yan
{"title":"利用高光谱数据和加权K-NN方法估算土壤重金属浓度","authors":"Weibo Ma, Kun Tan, Q. Du, Jianwei Ding, Qingwu Yan","doi":"10.1109/WHISPERS.2016.8071813","DOIUrl":null,"url":null,"abstract":"The potential hazard of heavy metals in reclaimed mine soil has influenced on the human health. The inversion analysis of hyperspectral data can be used to estimate heavy metal content of the soil effectively. In this paper, the characteristic bands are extracted by spectral pretreatment, including Savitzky-Golay (SG), Standard Normal Variety (SNV), First Derivative (FD), Second Derivative (SD), or Continuum Removal (CR) etc. Then, the weighted k-Nearest Neighbor (weighted k-NN) method is applied in the heavy metal inversion modeling to estimate the content of heavy metal with hyperspectral data. Compared with the widely used partial least squares regression (PLS), support vector machine (SVM) and k-Nearest Neighbor method (k-NN), the experimental results shown that the accuracy of weighted k-NN method was higher than other methods in the inversion of heavy Zinc (Zn), Chromium (Cr) and Plumbum (Pb).","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimating soil heavy metal concentration using hyperspectral data and weighted K-NN method\",\"authors\":\"Weibo Ma, Kun Tan, Q. Du, Jianwei Ding, Qingwu Yan\",\"doi\":\"10.1109/WHISPERS.2016.8071813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential hazard of heavy metals in reclaimed mine soil has influenced on the human health. The inversion analysis of hyperspectral data can be used to estimate heavy metal content of the soil effectively. In this paper, the characteristic bands are extracted by spectral pretreatment, including Savitzky-Golay (SG), Standard Normal Variety (SNV), First Derivative (FD), Second Derivative (SD), or Continuum Removal (CR) etc. Then, the weighted k-Nearest Neighbor (weighted k-NN) method is applied in the heavy metal inversion modeling to estimate the content of heavy metal with hyperspectral data. Compared with the widely used partial least squares regression (PLS), support vector machine (SVM) and k-Nearest Neighbor method (k-NN), the experimental results shown that the accuracy of weighted k-NN method was higher than other methods in the inversion of heavy Zinc (Zn), Chromium (Cr) and Plumbum (Pb).\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

矿山复垦土壤中重金属的潜在危害已经影响到人体健康。利用高光谱数据的反演分析可以有效地估算土壤重金属含量。本文通过光谱预处理提取特征波段,包括Savitzky-Golay (SG)、Standard Normal Variety (SNV)、一阶导数(FD)、二阶导数(SD)、Continuum Removal (CR)等。然后,将加权k-最近邻(weighted k-NN)方法应用于重金属反演建模,利用高光谱数据估计重金属含量。实验结果表明,与广泛应用的偏最小二乘回归(PLS)、支持向量机(SVM)和k-最近邻方法(k-NN)相比,加权k-NN方法在重锌(Zn)、铬(Cr)和铅(Pb)反演中的精度高于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating soil heavy metal concentration using hyperspectral data and weighted K-NN method
The potential hazard of heavy metals in reclaimed mine soil has influenced on the human health. The inversion analysis of hyperspectral data can be used to estimate heavy metal content of the soil effectively. In this paper, the characteristic bands are extracted by spectral pretreatment, including Savitzky-Golay (SG), Standard Normal Variety (SNV), First Derivative (FD), Second Derivative (SD), or Continuum Removal (CR) etc. Then, the weighted k-Nearest Neighbor (weighted k-NN) method is applied in the heavy metal inversion modeling to estimate the content of heavy metal with hyperspectral data. Compared with the widely used partial least squares regression (PLS), support vector machine (SVM) and k-Nearest Neighbor method (k-NN), the experimental results shown that the accuracy of weighted k-NN method was higher than other methods in the inversion of heavy Zinc (Zn), Chromium (Cr) and Plumbum (Pb).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1