一个实用的可重构硬件加速器,用于布尔可满足性求解

John D. Davis, Zhangxi Tan, Fang Yu, Lintao Zhang
{"title":"一个实用的可重构硬件加速器,用于布尔可满足性求解","authors":"John D. Davis, Zhangxi Tan, Fang Yu, Lintao Zhang","doi":"10.1145/1391469.1391669","DOIUrl":null,"url":null,"abstract":"We present a practical FPGA-based accelerator for solving Boolean Satisfiability problems (SAT). Unlike previous efforts for hardware accelerated SAT solving, our design focuses on accelerating the most time consuming part of the SAT solver - Boolean Constraint Propagation (BCP), leaving the choices of heuristics such as branching order, restarting policy, and learning and backtracking to software. Our novel approach uses an application-specific architecture instead of an instance-specific one to avoid time-consuming FPGA synthesis for each SAT instance. By avoiding global signal wires and carefully pipelining the design, our BCP accelerator is able to achieve much higher clock frequency than that of previous work. In addition, it can load SAT instances in milliseconds, can handle SAT instances with tens of thousands of variables and clauses using a single FPGA, and can easily scale to handle more clauses by using multiple FPGAs. Our evaluation on a cycle-accurate simulator shows that the FPGA co-processor can achieve 3.7-38.6x speedup on BCP compared to state-of-the-art software SAT solvers.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"81 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"A practical reconfigurable hardware accelerator for boolean satisfiability solvers\",\"authors\":\"John D. Davis, Zhangxi Tan, Fang Yu, Lintao Zhang\",\"doi\":\"10.1145/1391469.1391669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a practical FPGA-based accelerator for solving Boolean Satisfiability problems (SAT). Unlike previous efforts for hardware accelerated SAT solving, our design focuses on accelerating the most time consuming part of the SAT solver - Boolean Constraint Propagation (BCP), leaving the choices of heuristics such as branching order, restarting policy, and learning and backtracking to software. Our novel approach uses an application-specific architecture instead of an instance-specific one to avoid time-consuming FPGA synthesis for each SAT instance. By avoiding global signal wires and carefully pipelining the design, our BCP accelerator is able to achieve much higher clock frequency than that of previous work. In addition, it can load SAT instances in milliseconds, can handle SAT instances with tens of thousands of variables and clauses using a single FPGA, and can easily scale to handle more clauses by using multiple FPGAs. Our evaluation on a cycle-accurate simulator shows that the FPGA co-processor can achieve 3.7-38.6x speedup on BCP compared to state-of-the-art software SAT solvers.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"81 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

我们提出了一个实用的基于fpga的求解布尔可满足性问题(SAT)的加速器。与之前硬件加速SAT求解的努力不同,我们的设计侧重于加速SAT求解器中最耗时的部分——布尔约束传播(BCP),将分支顺序、重新启动策略、学习和回溯等启发式选择留给软件。我们的新方法使用特定于应用程序的架构而不是特定于实例的架构,以避免为每个SAT实例进行耗时的FPGA合成。通过避免全局信号线和精心的流水线设计,我们的BCP加速器可以获得比以前工作更高的时钟频率。此外,它可以在毫秒内加载SAT实例,可以使用单个FPGA处理具有数万个变量和子句的SAT实例,并且可以通过使用多个FPGA轻松扩展以处理更多子句。我们在周期精确模拟器上的评估表明,与最先进的软件SAT求解器相比,FPGA协处理器在BCP上可以实现3.7-38.6倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A practical reconfigurable hardware accelerator for boolean satisfiability solvers
We present a practical FPGA-based accelerator for solving Boolean Satisfiability problems (SAT). Unlike previous efforts for hardware accelerated SAT solving, our design focuses on accelerating the most time consuming part of the SAT solver - Boolean Constraint Propagation (BCP), leaving the choices of heuristics such as branching order, restarting policy, and learning and backtracking to software. Our novel approach uses an application-specific architecture instead of an instance-specific one to avoid time-consuming FPGA synthesis for each SAT instance. By avoiding global signal wires and carefully pipelining the design, our BCP accelerator is able to achieve much higher clock frequency than that of previous work. In addition, it can load SAT instances in milliseconds, can handle SAT instances with tens of thousands of variables and clauses using a single FPGA, and can easily scale to handle more clauses by using multiple FPGAs. Our evaluation on a cycle-accurate simulator shows that the FPGA co-processor can achieve 3.7-38.6x speedup on BCP compared to state-of-the-art software SAT solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic Scratch Pad Memory management tool and MPEG-4 encoder case study Standard interfaces in mobile terminals — increasing the efficiency of device design and accelerating innovation Concurrent topology and routing optimization in automotive network integration Keeping hot chips cool: Are IC thermal problems hot air? Customizing computation accelerators for extensible multi-issue processors with effective optimization techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1