{"title":"事件相关电位分类算法的比较","authors":"A. Alsufyani","doi":"10.1109/CAIPT.2017.8320734","DOIUrl":null,"url":null,"abstract":"We compare six methods for classifying low signal-to-noise Event Related Potential (ERP) data into deceiving and nondeceiving. Three methods perform poorly: Correlation Coefficient (CD), Support Vector Machine with linear Kernel (LSVM) and SVM with radial basis kernel (RBSVM), while another, Amplitude Difference (AD), performs satisfactorily. However, a simple by-individual weight template method performs better still.","PeriodicalId":351075,"journal":{"name":"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparison of classification algorithms for Event Related Potentials\",\"authors\":\"A. Alsufyani\",\"doi\":\"10.1109/CAIPT.2017.8320734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare six methods for classifying low signal-to-noise Event Related Potential (ERP) data into deceiving and nondeceiving. Three methods perform poorly: Correlation Coefficient (CD), Support Vector Machine with linear Kernel (LSVM) and SVM with radial basis kernel (RBSVM), while another, Amplitude Difference (AD), performs satisfactorily. However, a simple by-individual weight template method performs better still.\",\"PeriodicalId\":351075,\"journal\":{\"name\":\"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIPT.2017.8320734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIPT.2017.8320734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们比较了六种将低信噪事件相关电位(ERP)数据分类为欺骗性和非欺骗性的方法。相关系数法(CD)、线性核支持向量机法(LSVM)和径向基核支持向量机法(RBSVM)表现较差,幅值差分法(AD)表现较好。然而,一个简单的按个体权重的模板方法仍然表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of classification algorithms for Event Related Potentials
We compare six methods for classifying low signal-to-noise Event Related Potential (ERP) data into deceiving and nondeceiving. Three methods perform poorly: Correlation Coefficient (CD), Support Vector Machine with linear Kernel (LSVM) and SVM with radial basis kernel (RBSVM), while another, Amplitude Difference (AD), performs satisfactorily. However, a simple by-individual weight template method performs better still.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of real-time static hand gesture recognition using artificial neural network Application of baby's nutrition status using Macromedia Flash Analysis of radio based train control system using LTE-R and analysis of security requirements: The security of the radio based train control system A study on the effective interaction method to improve the presence in social virtual reality game Expert system to optimize the best goat selection using topsis: Decision support system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1