{"title":"复杂变形环境中的边缘碰撞检测","authors":"Thomas Jund, David Cazier, Jean-François Dufourd","doi":"10.2312/PE/vriphys/vriphys10/069-078","DOIUrl":null,"url":null,"abstract":"We present in this paper a simulation framework that allows a precise and efficient handling of collisions and contacts between deformable moving bodies and their environment. The moving bodies are sampled as meshes whose vertices are followed in a convex subdivision of the surrounding space. Particles are continuously spanned along the edges to detect collisions with cells of this subdivision. Our method supports dynamic subdivision of the moving bodies and contact areas. It allows us to correctly handle geometric and topological changes in the environment, like cuts, tears or breaks and, more generally, additions or removals of material. We report experimental results obtained with mass spring and shape matching based physical simulations and discuss the performance of our method. We compare our approach with classical ones based on hierarchical data structures.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Edge Collision Detection in Complex Deformable Environments\",\"authors\":\"Thomas Jund, David Cazier, Jean-François Dufourd\",\"doi\":\"10.2312/PE/vriphys/vriphys10/069-078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this paper a simulation framework that allows a precise and efficient handling of collisions and contacts between deformable moving bodies and their environment. The moving bodies are sampled as meshes whose vertices are followed in a convex subdivision of the surrounding space. Particles are continuously spanned along the edges to detect collisions with cells of this subdivision. Our method supports dynamic subdivision of the moving bodies and contact areas. It allows us to correctly handle geometric and topological changes in the environment, like cuts, tears or breaks and, more generally, additions or removals of material. We report experimental results obtained with mass spring and shape matching based physical simulations and discuss the performance of our method. We compare our approach with classical ones based on hierarchical data structures.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/vriphys/vriphys10/069-078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys10/069-078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge Collision Detection in Complex Deformable Environments
We present in this paper a simulation framework that allows a precise and efficient handling of collisions and contacts between deformable moving bodies and their environment. The moving bodies are sampled as meshes whose vertices are followed in a convex subdivision of the surrounding space. Particles are continuously spanned along the edges to detect collisions with cells of this subdivision. Our method supports dynamic subdivision of the moving bodies and contact areas. It allows us to correctly handle geometric and topological changes in the environment, like cuts, tears or breaks and, more generally, additions or removals of material. We report experimental results obtained with mass spring and shape matching based physical simulations and discuss the performance of our method. We compare our approach with classical ones based on hierarchical data structures.