黑色素和血红蛋白在皮肤病分析中的鉴定

Zhao Liu, J. Zerubia
{"title":"黑色素和血红蛋白在皮肤病分析中的鉴定","authors":"Zhao Liu, J. Zerubia","doi":"10.1109/ACPR.2013.9","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method to extract melanin and hemoglobin concentrations of human skin, using bilateral decomposition with the knowledge of a multiple layered skin model and absorbance characteristics of major chromophores. Different from state-of-art approaches, the proposed method enables to address highlight and strong shading usually existing in skin color images captured under uncontrolled environment. The derived melanin and hemoglobin indices, directly related to the pathological tissue conditions, tend to be less influenced by external imaging factors and are effective for describing pigmentation distributions. Experiments demonstrate the value of the proposed method for computer-aided diagnosis of different skin diseases. The diagnostic accuracy of melanoma increases by 9-15% for conventional RGB lesion images, compared to techniques using other color descriptors. The discrimination of inflammatory acne and hyper pigmentation reveals acne stage, which would be useful for acne severity evaluation. It is expected that this new method will prove useful for other skin disease analysis.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Melanin and Hemoglobin Identification for Skin Disease Analysis\",\"authors\":\"Zhao Liu, J. Zerubia\",\"doi\":\"10.1109/ACPR.2013.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method to extract melanin and hemoglobin concentrations of human skin, using bilateral decomposition with the knowledge of a multiple layered skin model and absorbance characteristics of major chromophores. Different from state-of-art approaches, the proposed method enables to address highlight and strong shading usually existing in skin color images captured under uncontrolled environment. The derived melanin and hemoglobin indices, directly related to the pathological tissue conditions, tend to be less influenced by external imaging factors and are effective for describing pigmentation distributions. Experiments demonstrate the value of the proposed method for computer-aided diagnosis of different skin diseases. The diagnostic accuracy of melanoma increases by 9-15% for conventional RGB lesion images, compared to techniques using other color descriptors. The discrimination of inflammatory acne and hyper pigmentation reveals acne stage, which would be useful for acne severity evaluation. It is expected that this new method will prove useful for other skin disease analysis.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于多层皮肤模型和主要发色团吸光度特征的双侧分解提取人体皮肤中黑色素和血红蛋白浓度的新方法。与目前的方法不同,该方法能够解决在非受控环境下拍摄的肤色图像中通常存在的高光和强阴影问题。衍生的黑色素和血红蛋白指标与病理组织状况直接相关,受外界影像学因素影响较小,可有效描述色素分布。实验验证了该方法对不同皮肤疾病的计算机辅助诊断的价值。与使用其他颜色描述符的技术相比,传统RGB病变图像对黑色素瘤的诊断准确率提高了9-15%。炎症性痤疮和色素沉着的区分可以反映痤疮的分期,有助于痤疮严重程度的评价。预计这种新方法将对其他皮肤病的分析有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melanin and Hemoglobin Identification for Skin Disease Analysis
This paper proposes a novel method to extract melanin and hemoglobin concentrations of human skin, using bilateral decomposition with the knowledge of a multiple layered skin model and absorbance characteristics of major chromophores. Different from state-of-art approaches, the proposed method enables to address highlight and strong shading usually existing in skin color images captured under uncontrolled environment. The derived melanin and hemoglobin indices, directly related to the pathological tissue conditions, tend to be less influenced by external imaging factors and are effective for describing pigmentation distributions. Experiments demonstrate the value of the proposed method for computer-aided diagnosis of different skin diseases. The diagnostic accuracy of melanoma increases by 9-15% for conventional RGB lesion images, compared to techniques using other color descriptors. The discrimination of inflammatory acne and hyper pigmentation reveals acne stage, which would be useful for acne severity evaluation. It is expected that this new method will prove useful for other skin disease analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1