{"title":"随大流:使用消息流的参数化验证","authors":"Muralidhar Talupur, M. Tuttle","doi":"10.1109/FMCAD.2008.ECP.14","DOIUrl":null,"url":null,"abstract":"A message flow is a sequence of messages sent among processors during the execution of a protocol, usually illustrated with something like a message sequence chart. Protocol designers use message flows to describe and reason about their protocols. We show how to derive high-quality invariants from message flows and use these invariants to accelerate a state-of-the-art method for parameterized protocol verification called the CMP method. The CMP method works by iteratively strengthening and abstracting a protocol. The labor-intensive portion of the method is finding the protocol invariants needed for each iteration. We provide a new analysis of the CMP method proving it works with any sound abstraction procedure. This facilitates the use of a new abstraction procedure tailored to our protocol invariants in the CMP method. Our experience is that message-flow derived invariants get to the heart of protocol correctness in the sense that only couple of additional invariants are needed for the CMP method to converge.","PeriodicalId":399042,"journal":{"name":"2008 Formal Methods in Computer-Aided Design","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Going with the Flow: Parameterized Verification Using Message Flows\",\"authors\":\"Muralidhar Talupur, M. Tuttle\",\"doi\":\"10.1109/FMCAD.2008.ECP.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A message flow is a sequence of messages sent among processors during the execution of a protocol, usually illustrated with something like a message sequence chart. Protocol designers use message flows to describe and reason about their protocols. We show how to derive high-quality invariants from message flows and use these invariants to accelerate a state-of-the-art method for parameterized protocol verification called the CMP method. The CMP method works by iteratively strengthening and abstracting a protocol. The labor-intensive portion of the method is finding the protocol invariants needed for each iteration. We provide a new analysis of the CMP method proving it works with any sound abstraction procedure. This facilitates the use of a new abstraction procedure tailored to our protocol invariants in the CMP method. Our experience is that message-flow derived invariants get to the heart of protocol correctness in the sense that only couple of additional invariants are needed for the CMP method to converge.\",\"PeriodicalId\":399042,\"journal\":{\"name\":\"2008 Formal Methods in Computer-Aided Design\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Formal Methods in Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2008.ECP.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Formal Methods in Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2008.ECP.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Going with the Flow: Parameterized Verification Using Message Flows
A message flow is a sequence of messages sent among processors during the execution of a protocol, usually illustrated with something like a message sequence chart. Protocol designers use message flows to describe and reason about their protocols. We show how to derive high-quality invariants from message flows and use these invariants to accelerate a state-of-the-art method for parameterized protocol verification called the CMP method. The CMP method works by iteratively strengthening and abstracting a protocol. The labor-intensive portion of the method is finding the protocol invariants needed for each iteration. We provide a new analysis of the CMP method proving it works with any sound abstraction procedure. This facilitates the use of a new abstraction procedure tailored to our protocol invariants in the CMP method. Our experience is that message-flow derived invariants get to the heart of protocol correctness in the sense that only couple of additional invariants are needed for the CMP method to converge.