PDGF受体β亚基主要酪氨酸磷酸化位点的功能。

A Kazlauskas, D L Durden, J A Cooper
{"title":"PDGF受体β亚基主要酪氨酸磷酸化位点的功能。","authors":"A Kazlauskas,&nbsp;D L Durden,&nbsp;J A Cooper","doi":"10.1091/mbc.2.6.413","DOIUrl":null,"url":null,"abstract":"<p><p>Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 6","pages":"413-25"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.6.413","citationCount":"74","resultStr":"{\"title\":\"Functions of the major tyrosine phosphorylation site of the PDGF receptor beta subunit.\",\"authors\":\"A Kazlauskas,&nbsp;D L Durden,&nbsp;J A Cooper\",\"doi\":\"10.1091/mbc.2.6.413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis.</p>\",\"PeriodicalId\":9671,\"journal\":{\"name\":\"Cell regulation\",\"volume\":\"2 6\",\"pages\":\"413-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1091/mbc.2.6.413\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.2.6.413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.6.413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

人类血小板衍生生长因子受体(PDGFR) β亚基中的两个酪氨酸磷酸化位点先前已被定位为激酶插入的酪氨酸(Y)751和激酶结构域的Y857。Y857是pdgf刺激细胞中酪氨酸磷酸化的主要位点。为了评估这些磷酸化的重要性,我们对狗肾上皮细胞中野生型(WT)和突变型人PDGF受体β亚基进行了表征。用苯丙氨酸(F)替代Y751或Y857,将pdgf刺激的DNA合成降低到WT水平的约50%。两种酪氨酸突变的突变受体不能启动DNA合成,激酶失活的突变受体也是如此。表皮生长因子受体的转调需要Y857而不需要Y751。我们还测试了磷酸化位点突变对pdgf刺激的受体激酶活性的影响。在表达这两种突变受体的上皮细胞中,检测了pdgf诱导的两种细胞蛋白,磷脂酶C γ 1 (PLC γ 1)和Ras的GTPase激活蛋白(GAP)的酪氨酸磷酸化。F857突变显著降低了GAP和PLC γ 1酪氨酸磷酸化水平,而F751突变则不显著。F857受体的激酶活性也明显降低。免疫沉淀的WT受体显示,如果从pdgf刺激的细胞中免疫沉淀,其特异性激酶活性增加两到四倍。F751受体表现出类似的活性增加,而F857受体则没有。我们的数据表明,Y857的磷酸化可能对刺激受体的激酶活性和下游活动(如表皮生长因子受体转调和有丝分裂)很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functions of the major tyrosine phosphorylation site of the PDGF receptor beta subunit.

Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Alpha 2-macroglobulin restricts plasminogen activation to the surface of RC2A leukemia cells. Activation of two new alpha(1,3)fucosyltransferase activities in Chinese hamster ovary cells by 5-azacytidine. Molecular cloning of a second form of rac protein kinase. Ca2+ inhibits guanine nucleotide-activated phospholipase D in neural-derived NG108-15 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1