{"title":"基于奇异谱分析的可穿戴传感器过渡检测与活动分类","authors":"D. Jarchi, L. Atallah, Guang-Zhong Yang","doi":"10.1109/BSN.2012.24","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of singular spectrum analysis (SSA) to segment and classify human activities in real time by using an ear-worn Activity Recognition (e-AR) sensor. A similarity measure is calculated using SSA to construct a 3D feature vector from the 3 axes of e-AR signal. An algorithm based on the concept of clustering and buffering is then implemented in order to detect activity transition in real time as subjects perform their daily activities. An incremental subspace learning algorithm based on SSA is also proposed for activity classification. The proposed algorithm is applied to a group of five subjects performing daily activities and the results have shown the effectiveness of the method for transition detection and activity classification.","PeriodicalId":101720,"journal":{"name":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Transition Detection and Activity Classification from Wearable Sensors Using Singular Spectrum Analysis\",\"authors\":\"D. Jarchi, L. Atallah, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2012.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of singular spectrum analysis (SSA) to segment and classify human activities in real time by using an ear-worn Activity Recognition (e-AR) sensor. A similarity measure is calculated using SSA to construct a 3D feature vector from the 3 axes of e-AR signal. An algorithm based on the concept of clustering and buffering is then implemented in order to detect activity transition in real time as subjects perform their daily activities. An incremental subspace learning algorithm based on SSA is also proposed for activity classification. The proposed algorithm is applied to a group of five subjects performing daily activities and the results have shown the effectiveness of the method for transition detection and activity classification.\",\"PeriodicalId\":101720,\"journal\":{\"name\":\"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2012.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2012.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transition Detection and Activity Classification from Wearable Sensors Using Singular Spectrum Analysis
This paper proposes the use of singular spectrum analysis (SSA) to segment and classify human activities in real time by using an ear-worn Activity Recognition (e-AR) sensor. A similarity measure is calculated using SSA to construct a 3D feature vector from the 3 axes of e-AR signal. An algorithm based on the concept of clustering and buffering is then implemented in order to detect activity transition in real time as subjects perform their daily activities. An incremental subspace learning algorithm based on SSA is also proposed for activity classification. The proposed algorithm is applied to a group of five subjects performing daily activities and the results have shown the effectiveness of the method for transition detection and activity classification.