在线个性化A/B测试中应避免的实验陷阱

Maria Esteller-Cucala, Vicenc Fernandez, Diego Villuendas
{"title":"在线个性化A/B测试中应避免的实验陷阱","authors":"Maria Esteller-Cucala, Vicenc Fernandez, Diego Villuendas","doi":"10.1145/3314183.3323853","DOIUrl":null,"url":null,"abstract":"Online controlled experiments (also called A/B tests, bucket testing or randomized experiments) have become an habitual practice in numerous companies for measuring the impact of new features and changes deployed to softwares products. In theory, these experiments are one of the simplest methods to evaluate the potential effects that new features have on user's behavior. In practice, however, there are many pitfalls that can obscure the interpretation of results or induce invalid conclusions. There is, in the literature, no shortage of prior work on online controlled experiments addressing these pitfalls and conclusions misinterpretations, but the topic is not tackled considering the specific case of testing personalization features. In this paper, we present some of the experimentation pitfalls that are particularly important for personalization features. To better illustrate each pitfall, we include a combination of theoretical argumentation as well as examples from real company's experiments. While there is clearly value in evaluating personalized features by means of online controlled experiments, there are some pitfalls to bear in mind while testing. With this paper, we aim to increase the experimenters' awareness of leading to improved quality and reliability of the results.","PeriodicalId":240482,"journal":{"name":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimentation Pitfalls to Avoid in A/B Testing for Online Personalization\",\"authors\":\"Maria Esteller-Cucala, Vicenc Fernandez, Diego Villuendas\",\"doi\":\"10.1145/3314183.3323853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online controlled experiments (also called A/B tests, bucket testing or randomized experiments) have become an habitual practice in numerous companies for measuring the impact of new features and changes deployed to softwares products. In theory, these experiments are one of the simplest methods to evaluate the potential effects that new features have on user's behavior. In practice, however, there are many pitfalls that can obscure the interpretation of results or induce invalid conclusions. There is, in the literature, no shortage of prior work on online controlled experiments addressing these pitfalls and conclusions misinterpretations, but the topic is not tackled considering the specific case of testing personalization features. In this paper, we present some of the experimentation pitfalls that are particularly important for personalization features. To better illustrate each pitfall, we include a combination of theoretical argumentation as well as examples from real company's experiments. While there is clearly value in evaluating personalized features by means of online controlled experiments, there are some pitfalls to bear in mind while testing. With this paper, we aim to increase the experimenters' awareness of leading to improved quality and reliability of the results.\",\"PeriodicalId\":240482,\"journal\":{\"name\":\"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314183.3323853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314183.3323853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在线控制实验(也称为A/B测试、桶测试或随机实验)已经成为许多公司衡量新特性和部署到软件产品的更改的影响的习惯做法。理论上,这些实验是评估新功能对用户行为的潜在影响的最简单方法之一。然而,在实践中,有许多陷阱可以模糊对结果的解释或得出无效的结论。在文献中,不乏针对这些陷阱和结论误解的在线控制实验的先前工作,但考虑到测试个性化特征的具体情况,该主题没有得到解决。在本文中,我们提出了一些对个性化特征特别重要的实验陷阱。为了更好地说明每个陷阱,我们结合了理论论证和来自真实公司实验的例子。虽然通过在线控制实验来评估个性化特征显然是有价值的,但在测试时要记住一些陷阱。通过本文,我们旨在提高实验人员的意识,从而提高结果的质量和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimentation Pitfalls to Avoid in A/B Testing for Online Personalization
Online controlled experiments (also called A/B tests, bucket testing or randomized experiments) have become an habitual practice in numerous companies for measuring the impact of new features and changes deployed to softwares products. In theory, these experiments are one of the simplest methods to evaluate the potential effects that new features have on user's behavior. In practice, however, there are many pitfalls that can obscure the interpretation of results or induce invalid conclusions. There is, in the literature, no shortage of prior work on online controlled experiments addressing these pitfalls and conclusions misinterpretations, but the topic is not tackled considering the specific case of testing personalization features. In this paper, we present some of the experimentation pitfalls that are particularly important for personalization features. To better illustrate each pitfall, we include a combination of theoretical argumentation as well as examples from real company's experiments. While there is clearly value in evaluating personalized features by means of online controlled experiments, there are some pitfalls to bear in mind while testing. With this paper, we aim to increase the experimenters' awareness of leading to improved quality and reliability of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping the Reaction: Community Characteristics and Emotional Tone of Citizen Responses to Robotics Videos at TED versus YouTube Supporting the Exploration of Cultural Heritage Information via Search Behavior Analysis Exer-model: A User Model for Scrutinising Long-term Models of Physical Activity from Multiple Sensors NEAR: A Partner to Explain Any Factorised Recommender System Tikkoun Sofrim: A WebApp for Personalization and Adaptation of Crowdsourcing Transcriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1