使用个体轨迹的走廊学习

Nikolaos Zygouras, D. Gunopulos
{"title":"使用个体轨迹的走廊学习","authors":"Nikolaos Zygouras, D. Gunopulos","doi":"10.1109/MDM.2018.00032","DOIUrl":null,"url":null,"abstract":"The rapid development and commercialization of location acquisition technologies generates large trajectory datasets, that trace moving objects' trips. In this work, we propose a new trajectory mining algorithm, for discovering paths that are frequently followed by the given trajectories, named as corridors. We claim that the moving objects follow common paths-corridors. Detecting corridors from a collection of trajectories is extremely challenging due to the nature of the data (low sampling rates, different speeds, noisy measurements etc.). In this work we propose and evaluate a pipelined algorithm that abstracts from trajectories their underlying frequent paths.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Corridor Learning Using Individual Trajectories\",\"authors\":\"Nikolaos Zygouras, D. Gunopulos\",\"doi\":\"10.1109/MDM.2018.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development and commercialization of location acquisition technologies generates large trajectory datasets, that trace moving objects' trips. In this work, we propose a new trajectory mining algorithm, for discovering paths that are frequently followed by the given trajectories, named as corridors. We claim that the moving objects follow common paths-corridors. Detecting corridors from a collection of trajectories is extremely challenging due to the nature of the data (low sampling rates, different speeds, noisy measurements etc.). In this work we propose and evaluate a pipelined algorithm that abstracts from trajectories their underlying frequent paths.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

位置获取技术的快速发展和商业化产生了大型轨迹数据集,可以跟踪移动物体的行程。在这项工作中,我们提出了一种新的轨迹挖掘算法,用于发现被给定轨迹经常跟随的路径,称为走廊。我们声称移动的物体遵循共同的路径——走廊。由于数据的性质(低采样率、不同的速度、噪声测量等),从轨迹集合中检测走廊极具挑战性。在这项工作中,我们提出并评估了一种流水线算法,该算法从轨迹中抽象出其潜在的频繁路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corridor Learning Using Individual Trajectories
The rapid development and commercialization of location acquisition technologies generates large trajectory datasets, that trace moving objects' trips. In this work, we propose a new trajectory mining algorithm, for discovering paths that are frequently followed by the given trajectories, named as corridors. We claim that the moving objects follow common paths-corridors. Detecting corridors from a collection of trajectories is extremely challenging due to the nature of the data (low sampling rates, different speeds, noisy measurements etc.). In this work we propose and evaluate a pipelined algorithm that abstracts from trajectories their underlying frequent paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1