渐进式:基于图的图像-文本匹配双模态表示

Siqu Long, S. Han, Xiaojun Wan, Josiah Poon
{"title":"渐进式:基于图的图像-文本匹配双模态表示","authors":"Siqu Long, S. Han, Xiaojun Wan, Josiah Poon","doi":"10.1109/WACV51458.2022.00252","DOIUrl":null,"url":null,"abstract":"Image-text retrieval task is a challenging task. It aims to measure the visual-semantic correspondence between an image and a text caption. This is tough mainly because the image lacks semantic context information as in its corresponding text caption, and the text representation is very limited to fully describe the details of an image. In this paper, we introduce Graph-based Dual-modal Representations (GraDual), including Vision-Integrated Text Embedding (VITE) and Context-Integrated Visual Embedding (CIVE), for image-text retrieval. The GraDual improves the coverage of each modality by exploiting textual context semantics for the image representation, and using visual features as a guidance for the text representation. To be specific, we design: 1) a dual-modal graph representation mechanism to solve the lack of coverage issue for each modality. 2) an intermediate graph embedding integration strategy to enhance the important pattern across other modality global features. 3) a dual-modal driven crossmodal matching network to generate a filtered representation of another modality. Extensive experiments on two benchmark datasets, MS-COCO and Flickr30K, demonstrates the superiority of the proposed GraDual in comparison to state-of-the-art methods.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"GraDual: Graph-based Dual-modal Representation for Image-Text Matching\",\"authors\":\"Siqu Long, S. Han, Xiaojun Wan, Josiah Poon\",\"doi\":\"10.1109/WACV51458.2022.00252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-text retrieval task is a challenging task. It aims to measure the visual-semantic correspondence between an image and a text caption. This is tough mainly because the image lacks semantic context information as in its corresponding text caption, and the text representation is very limited to fully describe the details of an image. In this paper, we introduce Graph-based Dual-modal Representations (GraDual), including Vision-Integrated Text Embedding (VITE) and Context-Integrated Visual Embedding (CIVE), for image-text retrieval. The GraDual improves the coverage of each modality by exploiting textual context semantics for the image representation, and using visual features as a guidance for the text representation. To be specific, we design: 1) a dual-modal graph representation mechanism to solve the lack of coverage issue for each modality. 2) an intermediate graph embedding integration strategy to enhance the important pattern across other modality global features. 3) a dual-modal driven crossmodal matching network to generate a filtered representation of another modality. Extensive experiments on two benchmark datasets, MS-COCO and Flickr30K, demonstrates the superiority of the proposed GraDual in comparison to state-of-the-art methods.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

图像文本检索任务是一项具有挑战性的任务。它旨在测量图像和文本标题之间的视觉语义对应关系。这很困难,主要是因为图像缺乏相应文本标题中的语义上下文信息,并且文本表示非常有限,无法完全描述图像的细节。在本文中,我们引入了基于图的双模态表示(渐进),包括视觉集成文本嵌入(VITE)和上下文集成视觉嵌入(CIVE),用于图像-文本检索。渐进算法通过利用文本上下文语义进行图像表示,并使用视觉特征作为文本表示的指导,提高了每种模态的覆盖范围。具体来说,我们设计了:1)一个双峰图表示机制来解决每个模态缺乏覆盖的问题。2)中间图嵌入集成策略,增强重要模式跨越其他模态全局特征。3)双模态驱动的跨模态匹配网络,以生成另一模态的过滤表示。在MS-COCO和Flickr30K两个基准数据集上进行的大量实验表明,与最先进的方法相比,所提出的渐进式方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraDual: Graph-based Dual-modal Representation for Image-Text Matching
Image-text retrieval task is a challenging task. It aims to measure the visual-semantic correspondence between an image and a text caption. This is tough mainly because the image lacks semantic context information as in its corresponding text caption, and the text representation is very limited to fully describe the details of an image. In this paper, we introduce Graph-based Dual-modal Representations (GraDual), including Vision-Integrated Text Embedding (VITE) and Context-Integrated Visual Embedding (CIVE), for image-text retrieval. The GraDual improves the coverage of each modality by exploiting textual context semantics for the image representation, and using visual features as a guidance for the text representation. To be specific, we design: 1) a dual-modal graph representation mechanism to solve the lack of coverage issue for each modality. 2) an intermediate graph embedding integration strategy to enhance the important pattern across other modality global features. 3) a dual-modal driven crossmodal matching network to generate a filtered representation of another modality. Extensive experiments on two benchmark datasets, MS-COCO and Flickr30K, demonstrates the superiority of the proposed GraDual in comparison to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1