{"title":"壳聚糖水凝胶的溶胀特性","authors":"D. Rohindra, Ashveen Nand, J. R. Khurma","doi":"10.1071/SP04005","DOIUrl":null,"url":null,"abstract":"Chitosan hydrogels were prepared by crosslinking chitosan with glutaraldehyde. The swelling behaviour of the crosslinked and uncross-linked hydrogels was measured by swelling the gels in media of different pH and at different temperatures. The swelling behavior was observed to be dependent on pH, temperature and the degree of crosslinking. The gel films were characterized by Fourier transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The glass transition temperature (Tg) and the amount of free water in the hydrogels decreased with increasing crosslinking in the hydrogels.","PeriodicalId":148381,"journal":{"name":"The South Pacific Journal of Natural and Applied Sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Swelling properties of chitosan hydrogels\",\"authors\":\"D. Rohindra, Ashveen Nand, J. R. Khurma\",\"doi\":\"10.1071/SP04005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chitosan hydrogels were prepared by crosslinking chitosan with glutaraldehyde. The swelling behaviour of the crosslinked and uncross-linked hydrogels was measured by swelling the gels in media of different pH and at different temperatures. The swelling behavior was observed to be dependent on pH, temperature and the degree of crosslinking. The gel films were characterized by Fourier transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The glass transition temperature (Tg) and the amount of free water in the hydrogels decreased with increasing crosslinking in the hydrogels.\",\"PeriodicalId\":148381,\"journal\":{\"name\":\"The South Pacific Journal of Natural and Applied Sciences\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The South Pacific Journal of Natural and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/SP04005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The South Pacific Journal of Natural and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/SP04005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chitosan hydrogels were prepared by crosslinking chitosan with glutaraldehyde. The swelling behaviour of the crosslinked and uncross-linked hydrogels was measured by swelling the gels in media of different pH and at different temperatures. The swelling behavior was observed to be dependent on pH, temperature and the degree of crosslinking. The gel films were characterized by Fourier transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The glass transition temperature (Tg) and the amount of free water in the hydrogels decreased with increasing crosslinking in the hydrogels.