Faisal Nawab, A. Ibrahim, Shaikh Zeeshan Suheel, Adamu Ahmed Goje
{"title":"人工神经网络全球水平辐射预报与卫星全球水平辐射统计评价的比较","authors":"Faisal Nawab, A. Ibrahim, Shaikh Zeeshan Suheel, Adamu Ahmed Goje","doi":"10.1109/iCoMET57998.2023.10099300","DOIUrl":null,"url":null,"abstract":"The most important factor to take into account when building solar energy systems is solar irradiation. It is impossible to measure sun irradiation everywhere due to its high cost and difficulties. Additionally, in some places, the GHI was overpredicted by 25% by NASA satellite data. The main goal of this study was to develop an artificial neural network (ANN) model that can reduce the error in satellite data by predicting global horizontal irradiation (GHI) using inputs from satellite data obtained from the NASA Power Data viewer. The MAPE in the satellite was decreased by 35.8% in Peshawar, 10.2% in Islamabad, and 8.9% in Multan using the ANN models. Additionally, the results showed that all ANN models' predictions were more precise than satellite data.","PeriodicalId":369792,"journal":{"name":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of ANN Global Horizontal Irradiation predictions with Satellite Global Horizontal Irradiation using Statistical evaluation\",\"authors\":\"Faisal Nawab, A. Ibrahim, Shaikh Zeeshan Suheel, Adamu Ahmed Goje\",\"doi\":\"10.1109/iCoMET57998.2023.10099300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most important factor to take into account when building solar energy systems is solar irradiation. It is impossible to measure sun irradiation everywhere due to its high cost and difficulties. Additionally, in some places, the GHI was overpredicted by 25% by NASA satellite data. The main goal of this study was to develop an artificial neural network (ANN) model that can reduce the error in satellite data by predicting global horizontal irradiation (GHI) using inputs from satellite data obtained from the NASA Power Data viewer. The MAPE in the satellite was decreased by 35.8% in Peshawar, 10.2% in Islamabad, and 8.9% in Multan using the ANN models. Additionally, the results showed that all ANN models' predictions were more precise than satellite data.\",\"PeriodicalId\":369792,\"journal\":{\"name\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET57998.2023.10099300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET57998.2023.10099300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of ANN Global Horizontal Irradiation predictions with Satellite Global Horizontal Irradiation using Statistical evaluation
The most important factor to take into account when building solar energy systems is solar irradiation. It is impossible to measure sun irradiation everywhere due to its high cost and difficulties. Additionally, in some places, the GHI was overpredicted by 25% by NASA satellite data. The main goal of this study was to develop an artificial neural network (ANN) model that can reduce the error in satellite data by predicting global horizontal irradiation (GHI) using inputs from satellite data obtained from the NASA Power Data viewer. The MAPE in the satellite was decreased by 35.8% in Peshawar, 10.2% in Islamabad, and 8.9% in Multan using the ANN models. Additionally, the results showed that all ANN models' predictions were more precise than satellite data.