{"title":"弦图的高效并行算法","authors":"P. Klein","doi":"10.1109/SFCS.1988.21933","DOIUrl":null,"url":null,"abstract":"The author gives efficient parallel algorithms for recognizing chordal graphs, finding a maximum clique and a maximum independent set in a chordal graph, finding an optimal coloring of a chordal graph, finding a breadth-first search tree and a depth-first search tree of a chordal graph, recognizing interval graphs, and testing interval graphs for isomorphism. The key to the results is an efficient parallel algorithm for finding a perfect elimination ordering.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"Efficient parallel algorithms for chordal graphs\",\"authors\":\"P. Klein\",\"doi\":\"10.1109/SFCS.1988.21933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author gives efficient parallel algorithms for recognizing chordal graphs, finding a maximum clique and a maximum independent set in a chordal graph, finding an optimal coloring of a chordal graph, finding a breadth-first search tree and a depth-first search tree of a chordal graph, recognizing interval graphs, and testing interval graphs for isomorphism. The key to the results is an efficient parallel algorithm for finding a perfect elimination ordering.<<ETX>>\",\"PeriodicalId\":113255,\"journal\":{\"name\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1988.21933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The author gives efficient parallel algorithms for recognizing chordal graphs, finding a maximum clique and a maximum independent set in a chordal graph, finding an optimal coloring of a chordal graph, finding a breadth-first search tree and a depth-first search tree of a chordal graph, recognizing interval graphs, and testing interval graphs for isomorphism. The key to the results is an efficient parallel algorithm for finding a perfect elimination ordering.<>