面向移动设备的新型轻量级卷积神经网络

Kuan-Ting Lai, Guo-Shiang Lin
{"title":"面向移动设备的新型轻量级卷积神经网络","authors":"Kuan-Ting Lai, Guo-Shiang Lin","doi":"10.1109/ICCE-Taiwan55306.2022.9869273","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a light-weight convolutional neural network based on depth-wise separable convolutions and cross stage partial (CSP) network. Dissimilar to MobileNetV3, the proposed network is composed of some CSP blocks to reduce the model size and computational operations. For performance evaluation, Cifar10 and Cifar100 are used for testing. Compared to MobileNetv3, the model size and execution time of the proposed network in PC and mobile device are smaller. Therefore, the experimental results show that the proposed light-weight network can effectively extract visual features for image classification compared with MobileNetV3.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Light Weight Convolutional Neural Network for Mobile Devices\",\"authors\":\"Kuan-Ting Lai, Guo-Shiang Lin\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a light-weight convolutional neural network based on depth-wise separable convolutions and cross stage partial (CSP) network. Dissimilar to MobileNetV3, the proposed network is composed of some CSP blocks to reduce the model size and computational operations. For performance evaluation, Cifar10 and Cifar100 are used for testing. Compared to MobileNetv3, the model size and execution time of the proposed network in PC and mobile device are smaller. Therefore, the experimental results show that the proposed light-weight network can effectively extract visual features for image classification compared with MobileNetV3.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度可分离卷积和跨阶段部分(CSP)网络的轻量级卷积神经网络。与MobileNetV3不同,提出的网络由一些CSP块组成,以减少模型大小和计算操作。性能评估使用Cifar10和Cifar100进行测试。与MobileNetv3相比,本文提出的网络在PC和移动设备上的模型大小和执行时间都更小。因此,实验结果表明,与MobileNetV3相比,所提出的轻量级网络可以有效地提取用于图像分类的视觉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Light Weight Convolutional Neural Network for Mobile Devices
In this paper, we propose a light-weight convolutional neural network based on depth-wise separable convolutions and cross stage partial (CSP) network. Dissimilar to MobileNetV3, the proposed network is composed of some CSP blocks to reduce the model size and computational operations. For performance evaluation, Cifar10 and Cifar100 are used for testing. Compared to MobileNetv3, the model size and execution time of the proposed network in PC and mobile device are smaller. Therefore, the experimental results show that the proposed light-weight network can effectively extract visual features for image classification compared with MobileNetV3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications Performance Evaluation of Fault-Tolerant Routing Methods Using Parallel Programs Down-Sampling Dark Channel Prior of Airlight Estimation for Low Complexity Image Dehazing Chip Design Image Confusion Applied to Industrial Defect Detection System On Multimodal Semantic Consistency Detection of News Articles with Image Caption Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1