在野生动物视频中检测狩猎

N. Haering, R. J. Qian, M. Sezan
{"title":"在野生动物视频中检测狩猎","authors":"N. Haering, R. J. Qian, M. Sezan","doi":"10.1109/MMCS.1999.779323","DOIUrl":null,"url":null,"abstract":"The propose a three-level algorithm to detect animal hunt events in wildlife documentaries. The first level extracts texture, color and motion features, and detects motion blobs. The mid-level employs a neural network to verify the relevance of the detected motion blobs using the extracted color and texture features. This level also generates shot summaries in terms of intermediate-level descriptors which combine low-level features from the first level and contain results of mid-level, domain specific inferences made on the basis of shot features. The shot summaries are then used by a domain-specific inference process at the third level to detect the video segments that contain hunts.","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detecting hunts in wildlife videos\",\"authors\":\"N. Haering, R. J. Qian, M. Sezan\",\"doi\":\"10.1109/MMCS.1999.779323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The propose a three-level algorithm to detect animal hunt events in wildlife documentaries. The first level extracts texture, color and motion features, and detects motion blobs. The mid-level employs a neural network to verify the relevance of the detected motion blobs using the extracted color and texture features. This level also generates shot summaries in terms of intermediate-level descriptors which combine low-level features from the first level and contain results of mid-level, domain specific inferences made on the basis of shot features. The shot summaries are then used by a domain-specific inference process at the third level to detect the video segments that contain hunts.\",\"PeriodicalId\":408680,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Multimedia Computing and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Multimedia Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMCS.1999.779323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.779323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种检测野生动物纪录片中动物狩猎事件的三级算法。第一层提取纹理、颜色和运动特征,并检测运动斑点。中间层使用神经网络利用提取的颜色和纹理特征来验证检测到的运动斑点的相关性。这一层还根据中级描述符生成镜头摘要,中级描述符结合了第一级的低级特征,并包含中级的结果,基于镜头特征做出的特定领域的推断。然后,在第三层,特定领域的推理过程使用镜头摘要来检测包含狩猎的视频片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting hunts in wildlife videos
The propose a three-level algorithm to detect animal hunt events in wildlife documentaries. The first level extracts texture, color and motion features, and detects motion blobs. The mid-level employs a neural network to verify the relevance of the detected motion blobs using the extracted color and texture features. This level also generates shot summaries in terms of intermediate-level descriptors which combine low-level features from the first level and contain results of mid-level, domain specific inferences made on the basis of shot features. The shot summaries are then used by a domain-specific inference process at the third level to detect the video segments that contain hunts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fast H.261 software codec for high quality videoconferencing on PCs Virtual European School-VES An adaptive transport service for multimedia streams Virtual social clubs: meeting places for the Internet community An investigation of audio-visual speech recognition as applied to multimedia speech therapy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1