{"title":"银河系中的暗物质","authors":"A. Kaczmarek, A. Radosz","doi":"10.5772/intechopen.90267","DOIUrl":null,"url":null,"abstract":"Dark matter is an invisible substance that seems to make almost 85% of all the mass and roughly 26% of mass-energy content of our Universe. We briefly present the history of its discovery, and we discuss the main attempts to resolve the problem of the origin of dark matter. Those attempts are as follows: dark matter particles (WIMPs), unseen astrophysical objects (MACHOs), or interactions of dark matter with ordinary (luminous) matter. We also introduce a different approach claiming no need for existence of the dark matter (MOND) and recent findings about the ultra-diffuse galaxies. Finally we present 21-cm line observations of neutral hydrogen in the Milky Way made by using 3 m in diameter radio telescope in the Astronomical Observatory of the Jagiellonian University. These studies yield rotational curve of our galaxy. Rotational curve we obtained is compared to those present in literature and constitutes a proof of presence of dark matter in the Milky Way.","PeriodicalId":270584,"journal":{"name":"Progress in Relativity","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dark Matter within the Milky Way\",\"authors\":\"A. Kaczmarek, A. Radosz\",\"doi\":\"10.5772/intechopen.90267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dark matter is an invisible substance that seems to make almost 85% of all the mass and roughly 26% of mass-energy content of our Universe. We briefly present the history of its discovery, and we discuss the main attempts to resolve the problem of the origin of dark matter. Those attempts are as follows: dark matter particles (WIMPs), unseen astrophysical objects (MACHOs), or interactions of dark matter with ordinary (luminous) matter. We also introduce a different approach claiming no need for existence of the dark matter (MOND) and recent findings about the ultra-diffuse galaxies. Finally we present 21-cm line observations of neutral hydrogen in the Milky Way made by using 3 m in diameter radio telescope in the Astronomical Observatory of the Jagiellonian University. These studies yield rotational curve of our galaxy. Rotational curve we obtained is compared to those present in literature and constitutes a proof of presence of dark matter in the Milky Way.\",\"PeriodicalId\":270584,\"journal\":{\"name\":\"Progress in Relativity\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Relativity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.90267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Relativity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dark matter is an invisible substance that seems to make almost 85% of all the mass and roughly 26% of mass-energy content of our Universe. We briefly present the history of its discovery, and we discuss the main attempts to resolve the problem of the origin of dark matter. Those attempts are as follows: dark matter particles (WIMPs), unseen astrophysical objects (MACHOs), or interactions of dark matter with ordinary (luminous) matter. We also introduce a different approach claiming no need for existence of the dark matter (MOND) and recent findings about the ultra-diffuse galaxies. Finally we present 21-cm line observations of neutral hydrogen in the Milky Way made by using 3 m in diameter radio telescope in the Astronomical Observatory of the Jagiellonian University. These studies yield rotational curve of our galaxy. Rotational curve we obtained is compared to those present in literature and constitutes a proof of presence of dark matter in the Milky Way.