基于方向梯度直方图的支持向量机纹理图像分类

Hasan Demir
{"title":"基于方向梯度直方图的支持向量机纹理图像分类","authors":"Hasan Demir","doi":"10.5152/IUJEEE.2018.1814","DOIUrl":null,"url":null,"abstract":"Herein, using support vector machines, texture images were classified based on the histogram of oriented gradients, from which feature vectors were obtained. In addition, the success rate was examined for the feature vectors with different dimensions and the minimum length of a feature vector for performing classification was determined to be 288 elements.","PeriodicalId":256344,"journal":{"name":"Istanbul University - Journal of Electrical and Electronics Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of Texture Images Based on the Histogram of Oriented Gradients Using Support Vector Machines\",\"authors\":\"Hasan Demir\",\"doi\":\"10.5152/IUJEEE.2018.1814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, using support vector machines, texture images were classified based on the histogram of oriented gradients, from which feature vectors were obtained. In addition, the success rate was examined for the feature vectors with different dimensions and the minimum length of a feature vector for performing classification was determined to be 288 elements.\",\"PeriodicalId\":256344,\"journal\":{\"name\":\"Istanbul University - Journal of Electrical and Electronics Engineering\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Istanbul University - Journal of Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5152/IUJEEE.2018.1814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Istanbul University - Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5152/IUJEEE.2018.1814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用支持向量机,基于方向梯度直方图对纹理图像进行分类,并从中获得特征向量。此外,对不同维数的特征向量进行成功率检验,确定一个特征向量进行分类的最小长度为288个元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Texture Images Based on the Histogram of Oriented Gradients Using Support Vector Machines
Herein, using support vector machines, texture images were classified based on the histogram of oriented gradients, from which feature vectors were obtained. In addition, the success rate was examined for the feature vectors with different dimensions and the minimum length of a feature vector for performing classification was determined to be 288 elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrence Plot Analysis of Unsatured Polyester Samples Subjected to Contamination Power-Efficient Viterbi Decoder Architecture and Field Programmeble Gate Arrays Fpga Implementation A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis Suboptimal Frequency-Selective Transceiver Design for Multicarrier Millimeter Wave MIMO Systems An Operational Transconductance Amplifier-based Memcapacitor and Meminductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1