4种密集精确深度恢复算法的定量比较

Baozhong Tian, J. Barron
{"title":"4种密集精确深度恢复算法的定量比较","authors":"Baozhong Tian, J. Barron","doi":"10.1109/CRV.2005.11","DOIUrl":null,"url":null,"abstract":"We report on four algorithms for recovering dense depth maps from long image sequences, where the camera motion is known a priori. All methods use a Kalman filter to integrate intensity derivatives or optical flow over time to increase accuracy.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A quantitative comparison of 4 algorithms for recovering dense accurate depth\",\"authors\":\"Baozhong Tian, J. Barron\",\"doi\":\"10.1109/CRV.2005.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on four algorithms for recovering dense depth maps from long image sequences, where the camera motion is known a priori. All methods use a Kalman filter to integrate intensity derivatives or optical flow over time to increase accuracy.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们报告了从长图像序列中恢复密集深度图的四种算法,其中相机运动是已知的先验。所有方法都使用卡尔曼滤波器来积分强度导数或光流随时间的变化,以提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quantitative comparison of 4 algorithms for recovering dense accurate depth
We report on four algorithms for recovering dense depth maps from long image sequences, where the camera motion is known a priori. All methods use a Kalman filter to integrate intensity derivatives or optical flow over time to increase accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1