{"title":"基于机器学习的混合电影推荐系统设计","authors":"Vishal Paranjape, Neelu Nihalani, Nishchol Mishra","doi":"10.46338/ijetae0323_17","DOIUrl":null,"url":null,"abstract":"The primary aim of recommender system is to predict items which are of most interest to the users and today recommender systems play a vital role in boosting the sales in any e-commerce based platform. The present paper proposes an approach for recommending movies to the users on the basis on their choices. A novel technique for evaluation of collaborative filtering using SVD and hit ratio as a metric is taken in our proposed approach. We attempted to build a model-based Collaborative filtering technique. The proposed paper makes use of matrix factorization techniques like SVD & SVD++ for filtering movie recommendation system based on latent features. It makes better recommendations based on choice of user because it captures the underlying features driving the raw data. In this paper we are proposing a hybrid recommender system fusion of Content Based and SVD to get a new hybrid recommender system. Our proposed model gives the value of RMSE 0.87 for SVD model and RMSE 0.938 for SVD++ model. Keywords-- Collaborative filtering, movie recommendation, SVD, content based filtering","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Hybrid Movie Recommender System Using Machine Learning\",\"authors\":\"Vishal Paranjape, Neelu Nihalani, Nishchol Mishra\",\"doi\":\"10.46338/ijetae0323_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary aim of recommender system is to predict items which are of most interest to the users and today recommender systems play a vital role in boosting the sales in any e-commerce based platform. The present paper proposes an approach for recommending movies to the users on the basis on their choices. A novel technique for evaluation of collaborative filtering using SVD and hit ratio as a metric is taken in our proposed approach. We attempted to build a model-based Collaborative filtering technique. The proposed paper makes use of matrix factorization techniques like SVD & SVD++ for filtering movie recommendation system based on latent features. It makes better recommendations based on choice of user because it captures the underlying features driving the raw data. In this paper we are proposing a hybrid recommender system fusion of Content Based and SVD to get a new hybrid recommender system. Our proposed model gives the value of RMSE 0.87 for SVD model and RMSE 0.938 for SVD++ model. Keywords-- Collaborative filtering, movie recommendation, SVD, content based filtering\",\"PeriodicalId\":169403,\"journal\":{\"name\":\"International Journal of Emerging Technology and Advanced Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Technology and Advanced Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46338/ijetae0323_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae0323_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Hybrid Movie Recommender System Using Machine Learning
The primary aim of recommender system is to predict items which are of most interest to the users and today recommender systems play a vital role in boosting the sales in any e-commerce based platform. The present paper proposes an approach for recommending movies to the users on the basis on their choices. A novel technique for evaluation of collaborative filtering using SVD and hit ratio as a metric is taken in our proposed approach. We attempted to build a model-based Collaborative filtering technique. The proposed paper makes use of matrix factorization techniques like SVD & SVD++ for filtering movie recommendation system based on latent features. It makes better recommendations based on choice of user because it captures the underlying features driving the raw data. In this paper we are proposing a hybrid recommender system fusion of Content Based and SVD to get a new hybrid recommender system. Our proposed model gives the value of RMSE 0.87 for SVD model and RMSE 0.938 for SVD++ model. Keywords-- Collaborative filtering, movie recommendation, SVD, content based filtering