A. Aghagolzadeh, S. Meshgini, M. Nooshyar, M. Aghagolzadeh
{"title":"结合H.264/AVC标准和二维离散小波变换的极低比特率视频编码","authors":"A. Aghagolzadeh, S. Meshgini, M. Nooshyar, M. Aghagolzadeh","doi":"10.4236/wsn.2010.24044","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Very Low Bit-Rate Video Coding by Combining H.264/AVC Standard and 2-D Discrete Wavelet Transform\",\"authors\":\"A. Aghagolzadeh, S. Meshgini, M. Nooshyar, M. Aghagolzadeh\",\"doi\":\"10.4236/wsn.2010.24044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.\",\"PeriodicalId\":251051,\"journal\":{\"name\":\"Wirel. Sens. Netw.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wirel. Sens. Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wsn.2010.24044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Sens. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wsn.2010.24044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Very Low Bit-Rate Video Coding by Combining H.264/AVC Standard and 2-D Discrete Wavelet Transform
In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.