{"title":"信号集中的不确定原理","authors":"R. Somaraju, L. Hanlen","doi":"10.1109/AUSCTW.2006.1625252","DOIUrl":null,"url":null,"abstract":"Uncertainty principles for concentration of signals into truncated subspaces are considered. The \"classic\" uncertainty principle is explored as a special case of a more general operator framework. The time-bandwidth concentration problem is shown as a similar special case. A spatial concentration of radio signals example is provided, and it is shown that an uncertainty principle exists for concentration of single-frequency signals for regions in space. We show that the uncertainty is related to the volumes of the spatial regions","PeriodicalId":206040,"journal":{"name":"2006 Australian Communications Theory Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Uncertainty principles for signal concentrations\",\"authors\":\"R. Somaraju, L. Hanlen\",\"doi\":\"10.1109/AUSCTW.2006.1625252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty principles for concentration of signals into truncated subspaces are considered. The \\\"classic\\\" uncertainty principle is explored as a special case of a more general operator framework. The time-bandwidth concentration problem is shown as a similar special case. A spatial concentration of radio signals example is provided, and it is shown that an uncertainty principle exists for concentration of single-frequency signals for regions in space. We show that the uncertainty is related to the volumes of the spatial regions\",\"PeriodicalId\":206040,\"journal\":{\"name\":\"2006 Australian Communications Theory Workshop\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Australian Communications Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUSCTW.2006.1625252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Australian Communications Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUSCTW.2006.1625252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty principles for concentration of signals into truncated subspaces are considered. The "classic" uncertainty principle is explored as a special case of a more general operator framework. The time-bandwidth concentration problem is shown as a similar special case. A spatial concentration of radio signals example is provided, and it is shown that an uncertainty principle exists for concentration of single-frequency signals for regions in space. We show that the uncertainty is related to the volumes of the spatial regions