信息论和集合论的相似性

L. Cazzanti, M. Gupta
{"title":"信息论和集合论的相似性","authors":"L. Cazzanti, M. Gupta","doi":"10.1109/ISIT.2006.261752","DOIUrl":null,"url":null,"abstract":"We introduce a definition of similarity based on Tversky's set-theoretic linear contrast model and on information-theoretic principles. The similarity measures the residual entropy with respect to a random object. This residual entropy similarity strongly captures context, which we conjecture is important for similarity-based statistical learning. Properties of the similarity definition are established and examples illustrate its characteristics. We show that a previously-defined information-theoretic similarity is also set-theoretic, and compare it to the residual entropy similarity. The similarity between random objects is also treated","PeriodicalId":115298,"journal":{"name":"2006 IEEE International Symposium on Information Theory","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Information-theoretic and Set-theoretic Similarity\",\"authors\":\"L. Cazzanti, M. Gupta\",\"doi\":\"10.1109/ISIT.2006.261752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a definition of similarity based on Tversky's set-theoretic linear contrast model and on information-theoretic principles. The similarity measures the residual entropy with respect to a random object. This residual entropy similarity strongly captures context, which we conjecture is important for similarity-based statistical learning. Properties of the similarity definition are established and examples illustrate its characteristics. We show that a previously-defined information-theoretic similarity is also set-theoretic, and compare it to the residual entropy similarity. The similarity between random objects is also treated\",\"PeriodicalId\":115298,\"journal\":{\"name\":\"2006 IEEE International Symposium on Information Theory\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2006.261752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2006.261752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

基于Tversky的集合论线性对比模型和信息论原理,引入了相似性的定义。相似性度量相对于一个随机对象的残差熵。这种残差熵相似性强烈地捕获了上下文,我们推测这对于基于相似性的统计学习很重要。建立了相似度定义的性质,并举例说明了相似度定义的特点。我们证明了先前定义的信息论相似度也是集合论的,并将其与残差熵相似度进行了比较。随机对象之间的相似性也被处理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information-theoretic and Set-theoretic Similarity
We introduce a definition of similarity based on Tversky's set-theoretic linear contrast model and on information-theoretic principles. The similarity measures the residual entropy with respect to a random object. This residual entropy similarity strongly captures context, which we conjecture is important for similarity-based statistical learning. Properties of the similarity definition are established and examples illustrate its characteristics. We show that a previously-defined information-theoretic similarity is also set-theoretic, and compare it to the residual entropy similarity. The similarity between random objects is also treated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximately Lower Triangular Ensembles of LPDC Codes with Linear Encoding Complexity Comparison of Network Coding and Non-Network Coding Schemes for Multi-hop Wireless Networks A New Family of Space-Time Codes for Pulse Amplitude and Position Modulated UWB Systems Constructions of Cooperative Diversity Schemes for Asynchronous Wireless Networks Union Bound Analysis of Bit Interleaved Coded Orthogonal Modulation with Differential Precoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1