用深度神经网络建模电磁问题

F. Xu, Shilei Fu
{"title":"用深度神经网络建模电磁问题","authors":"F. Xu, Shilei Fu","doi":"10.1109/COMPEM.2018.8496532","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling EM Problem with Deep Neural Networks\",\"authors\":\"F. Xu, Shilei Fu\",\"doi\":\"10.1109/COMPEM.2018.8496532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文探讨了利用深度神经网络(DNN)对电磁正演问题进行建模的潜力。作为初步尝试,我们使用深度卷积神经网络(CNN)拟合二维有限元边界积分(FE-BI)模型计算的非均匀圆形区域的散射场。该方法提供了一种快速映射特定EM问题输入到输出的新工具,为DNN求解逆问题的进一步研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling EM Problem with Deep Neural Networks
This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designs of Compact, Planar, Wideband, Monopole Filtennas with Near-Field Resonant Parasitic Elements A Fast and High Order Algorithm for the Electromagnetic Scattering of Axis-Symmetric Objects A New Approach of Individually Control of Shorting Posts for Pattern Reconfigurable Antenna Designs X-Band Low Phase Noise Oscillator Based on Hybrid SIW Cavity Resonator Wideband CP Polarization and Pattern Reconfigurable Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1