通过Adversarial*的无数据知识蒸馏

Yu Jin, Zhaofan Qiu, GengQuan Xie, Jinye Cai, Chao Li, Liwen Shen
{"title":"通过Adversarial*的无数据知识蒸馏","authors":"Yu Jin, Zhaofan Qiu, GengQuan Xie, Jinye Cai, Chao Li, Liwen Shen","doi":"10.1109/ICCCS52626.2021.9449145","DOIUrl":null,"url":null,"abstract":"Network Compression is a challenging task, but it is crucial for using the deeper network in the low-performance device. If the original training datasets could be obtained, the traditional network compression approaches are useful for training a compact deep model. This paper proposes a novel framework for knowledge distillation without original training datasets via Generative Adversarial Network(GAN). We arrange the fixed pre-trained deeper network and the compact network as the discriminators to generate the training dataset. We also use the deeper network and the compact network as the generators, then introduce one simple full connection network as the discriminator to compress the complex network. We propose (i) a series of new images generation loss functions. (ii) a knowledge distillation method via generating adversarial networks. Finally, we show the superiority of our approach by contrasting with SOTA by benchmark datasets.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data-free Knowledge Distillation via Adversarial*\",\"authors\":\"Yu Jin, Zhaofan Qiu, GengQuan Xie, Jinye Cai, Chao Li, Liwen Shen\",\"doi\":\"10.1109/ICCCS52626.2021.9449145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Compression is a challenging task, but it is crucial for using the deeper network in the low-performance device. If the original training datasets could be obtained, the traditional network compression approaches are useful for training a compact deep model. This paper proposes a novel framework for knowledge distillation without original training datasets via Generative Adversarial Network(GAN). We arrange the fixed pre-trained deeper network and the compact network as the discriminators to generate the training dataset. We also use the deeper network and the compact network as the generators, then introduce one simple full connection network as the discriminator to compress the complex network. We propose (i) a series of new images generation loss functions. (ii) a knowledge distillation method via generating adversarial networks. Finally, we show the superiority of our approach by contrasting with SOTA by benchmark datasets.\",\"PeriodicalId\":376290,\"journal\":{\"name\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS52626.2021.9449145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

网络压缩是一项具有挑战性的任务,但它对于在低性能设备中使用更深层次的网络至关重要。如果能够获得原始的训练数据集,传统的网络压缩方法对于训练一个紧凑的深度模型是有用的。本文提出了一种基于生成对抗网络(GAN)的无需原始训练数据集的知识蒸馏新框架。我们将固定的预训练深度网络和紧凑网络作为判别器来生成训练数据集。在此基础上,引入一种简单的全连接网络作为判别器,对复杂网络进行压缩。我们提出(i)一系列新的图像生成损失函数。(ii)通过生成对抗网络的知识蒸馏方法。最后,我们通过对比基于基准数据集的SOTA来证明我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-free Knowledge Distillation via Adversarial*
Network Compression is a challenging task, but it is crucial for using the deeper network in the low-performance device. If the original training datasets could be obtained, the traditional network compression approaches are useful for training a compact deep model. This paper proposes a novel framework for knowledge distillation without original training datasets via Generative Adversarial Network(GAN). We arrange the fixed pre-trained deeper network and the compact network as the discriminators to generate the training dataset. We also use the deeper network and the compact network as the generators, then introduce one simple full connection network as the discriminator to compress the complex network. We propose (i) a series of new images generation loss functions. (ii) a knowledge distillation method via generating adversarial networks. Finally, we show the superiority of our approach by contrasting with SOTA by benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Measuring Data Fusion Based on EMBET Real Time Noise Power Estimation for Single Carrier Frequency Domain Equalization The CPDA Detector for the MIMO OCDM System A Cooperative Search Algorithm Based on Improved Particle Swarm Optimization Decision for UAV Swarm A Network Topology Awareness Based Probabilistic Broadcast Protocol for Data Transmission in Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1