人工神经网络根据训练数据采集时间周期自适应的有效性

A. Horzyk, E. Dudek-Dyduch
{"title":"人工神经网络根据训练数据采集时间周期自适应的有效性","authors":"A. Horzyk, E. Dudek-Dyduch","doi":"10.1109/ISDA.2005.43","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs) were inspired by natural neural networks (NNNs) and natural processes of training. The NNNs receive data in time still tuning the inner model of the surrounding world. These valuable features of our brains let us to dynamically accommodate themselves to the changes surround. These features make us possible to forget some irrelevant information, correct our knowledge and meet truth. ANNs usually work on the training data (TD) acquired in the past and totally known at the beginning of the adaptation process. Because of this the adaptation methods of the ANNs can be sometimes more effective than the natural training process observed in the NNNs. This paper discusses the ability of ANNs to adapt more effectively than NNNs do if only the TD is completely given at the beginning of the adaptation process. In this case the adaptation process of ANNs can be divided into two steps: analyze or examining the set of TD and construction of neural network topology and weights computation. Two different applications areas of such approach are presented in the paper.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effectiveness of artificial neural networks adaptation according to time period of training data acquisition\",\"authors\":\"A. Horzyk, E. Dudek-Dyduch\",\"doi\":\"10.1109/ISDA.2005.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks (ANNs) were inspired by natural neural networks (NNNs) and natural processes of training. The NNNs receive data in time still tuning the inner model of the surrounding world. These valuable features of our brains let us to dynamically accommodate themselves to the changes surround. These features make us possible to forget some irrelevant information, correct our knowledge and meet truth. ANNs usually work on the training data (TD) acquired in the past and totally known at the beginning of the adaptation process. Because of this the adaptation methods of the ANNs can be sometimes more effective than the natural training process observed in the NNNs. This paper discusses the ability of ANNs to adapt more effectively than NNNs do if only the TD is completely given at the beginning of the adaptation process. In this case the adaptation process of ANNs can be divided into two steps: analyze or examining the set of TD and construction of neural network topology and weights computation. Two different applications areas of such approach are presented in the paper.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人工神经网络(ANNs)的灵感来源于自然神经网络(NNNs)和自然训练过程。神经网络及时接收数据,仍然对周围世界的内部模型进行调整。我们大脑的这些有价值的特征使我们能够动态地适应周围的变化。这些特点使我们有可能忘记一些不相关的信息,纠正我们的知识和满足真理。人工神经网络通常在过去获得的训练数据(TD)上工作,并且在适应过程开始时完全已知。正因为如此,人工神经网络的自适应方法有时会比在人工神经网络中观察到的自然训练过程更有效。本文讨论了在自适应过程开始时仅给出TD的情况下,人工神经网络比神经网络更有效的自适应能力。在这种情况下,人工神经网络的自适应过程可以分为两个步骤:分析或检查TD集,构建神经网络拓扑和权重计算。本文介绍了这种方法的两个不同的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectiveness of artificial neural networks adaptation according to time period of training data acquisition
Artificial neural networks (ANNs) were inspired by natural neural networks (NNNs) and natural processes of training. The NNNs receive data in time still tuning the inner model of the surrounding world. These valuable features of our brains let us to dynamically accommodate themselves to the changes surround. These features make us possible to forget some irrelevant information, correct our knowledge and meet truth. ANNs usually work on the training data (TD) acquired in the past and totally known at the beginning of the adaptation process. Because of this the adaptation methods of the ANNs can be sometimes more effective than the natural training process observed in the NNNs. This paper discusses the ability of ANNs to adapt more effectively than NNNs do if only the TD is completely given at the beginning of the adaptation process. In this case the adaptation process of ANNs can be divided into two steps: analyze or examining the set of TD and construction of neural network topology and weights computation. Two different applications areas of such approach are presented in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed service-oriented architecture for information extraction system "Semanta" HAUNT-24: 24-bit hierarchical, application-confined unique naming technique The verification's criterion of learning algorithm New evolutionary approach to the GCP: a premature convergence and an evolution process character A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1