Lulu Chen, Jonathan N. Boyle, A. Danelakis, J. Ferryman, Simone Ferstl, Damjan Gicic, A. Grudzien, André Howe, M. Kowalski, Krzysztof Mierzejewski, T. Theoharis
{"title":"D4FLY多模态生物特征数据库:多模态融合评估,设想基于移动生物特征的边境控制","authors":"Lulu Chen, Jonathan N. Boyle, A. Danelakis, J. Ferryman, Simone Ferstl, Damjan Gicic, A. Grudzien, André Howe, M. Kowalski, Krzysztof Mierzejewski, T. Theoharis","doi":"10.1109/AVSS52988.2021.9663737","DOIUrl":null,"url":null,"abstract":"This work presents a novel multimodal biometric dataset with emerging biometric traits including 3D face, thermal face, iris on-the-move, iris mobile, somatotype and smartphone sensors. This dataset was created to resemble on-the-move characteristics in applications such as border control. The five types of biometric traits were selected as they can be captured while on-the-move, are contactless, and show potential for use in a multimodal fusion verification system in a border control scenario. Innovative sensor hardware was used in the data capture. The data featuring these biometric traits will be a valuable contribution to advancing biometric fusion research in general. Baseline evaluation was performed on each unimodal dataset. Multimodal fusion was evaluated based on various scenarios for comparison. Real-time performance is presented based on an Automated Border Control (ABC) scenario.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D4FLY Multimodal Biometric Database: multimodal fusion evaluation envisaging on-the-move biometric-based border control\",\"authors\":\"Lulu Chen, Jonathan N. Boyle, A. Danelakis, J. Ferryman, Simone Ferstl, Damjan Gicic, A. Grudzien, André Howe, M. Kowalski, Krzysztof Mierzejewski, T. Theoharis\",\"doi\":\"10.1109/AVSS52988.2021.9663737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a novel multimodal biometric dataset with emerging biometric traits including 3D face, thermal face, iris on-the-move, iris mobile, somatotype and smartphone sensors. This dataset was created to resemble on-the-move characteristics in applications such as border control. The five types of biometric traits were selected as they can be captured while on-the-move, are contactless, and show potential for use in a multimodal fusion verification system in a border control scenario. Innovative sensor hardware was used in the data capture. The data featuring these biometric traits will be a valuable contribution to advancing biometric fusion research in general. Baseline evaluation was performed on each unimodal dataset. Multimodal fusion was evaluated based on various scenarios for comparison. Real-time performance is presented based on an Automated Border Control (ABC) scenario.\",\"PeriodicalId\":246327,\"journal\":{\"name\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS52988.2021.9663737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work presents a novel multimodal biometric dataset with emerging biometric traits including 3D face, thermal face, iris on-the-move, iris mobile, somatotype and smartphone sensors. This dataset was created to resemble on-the-move characteristics in applications such as border control. The five types of biometric traits were selected as they can be captured while on-the-move, are contactless, and show potential for use in a multimodal fusion verification system in a border control scenario. Innovative sensor hardware was used in the data capture. The data featuring these biometric traits will be a valuable contribution to advancing biometric fusion research in general. Baseline evaluation was performed on each unimodal dataset. Multimodal fusion was evaluated based on various scenarios for comparison. Real-time performance is presented based on an Automated Border Control (ABC) scenario.