极端文本检测的语言特征探析(以俄语非法文本为例)

D. Devyatkin, I. Smirnov, Ananyeva Margarita, M. Kobozeva, Chepovskiy Andrey, Solovyev Fyodor
{"title":"极端文本检测的语言特征探析(以俄语非法文本为例)","authors":"D. Devyatkin, I. Smirnov, Ananyeva Margarita, M. Kobozeva, Chepovskiy Andrey, Solovyev Fyodor","doi":"10.1109/ISI.2017.8004907","DOIUrl":null,"url":null,"abstract":"In this paper we present results of a research on automatic extremist text detection. For this purpose an experimental dataset in the Russian language was created. According to the Russian legislation we cannot make it publicly available. We compared various classification methods (multinomial naive Bayes, logistic regression, linear SVM, random forest, and gradient boosting) and evaluated the contribution of differentiating features (lexical, semantic and psycholinguistic) to classification quality. The results of experiments show that psycholinguistic and semantic features are promising for extremist text detection.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Exploring linguistic features for extremist texts detection (on the material of Russian-speaking illegal texts)\",\"authors\":\"D. Devyatkin, I. Smirnov, Ananyeva Margarita, M. Kobozeva, Chepovskiy Andrey, Solovyev Fyodor\",\"doi\":\"10.1109/ISI.2017.8004907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present results of a research on automatic extremist text detection. For this purpose an experimental dataset in the Russian language was created. According to the Russian legislation we cannot make it publicly available. We compared various classification methods (multinomial naive Bayes, logistic regression, linear SVM, random forest, and gradient boosting) and evaluated the contribution of differentiating features (lexical, semantic and psycholinguistic) to classification quality. The results of experiments show that psycholinguistic and semantic features are promising for extremist text detection.\",\"PeriodicalId\":423696,\"journal\":{\"name\":\"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2017.8004907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文介绍了一种极端文本自动检测方法的研究成果。为此,我们创建了一个俄语实验数据集。根据俄罗斯法律,我们不能将其公开。我们比较了各种分类方法(多项朴素贝叶斯、逻辑回归、线性支持向量机、随机森林和梯度增强),并评估了区分特征(词汇、语义和心理语言学)对分类质量的贡献。实验结果表明,心理语言学和语义特征在极端主义文本检测中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring linguistic features for extremist texts detection (on the material of Russian-speaking illegal texts)
In this paper we present results of a research on automatic extremist text detection. For this purpose an experimental dataset in the Russian language was created. According to the Russian legislation we cannot make it publicly available. We compared various classification methods (multinomial naive Bayes, logistic regression, linear SVM, random forest, and gradient boosting) and evaluated the contribution of differentiating features (lexical, semantic and psycholinguistic) to classification quality. The results of experiments show that psycholinguistic and semantic features are promising for extremist text detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The dynamics of health sentiments with competitive interactions in social media Phishing detection: A recent intelligent machine learning comparison based on models content and features A framework for digital forensics analysis based on semantic role labeling Alignment-free indexing-first-one hashing with bloom filter integration Assessing medical device vulnerabilities on the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1