Gamila Obadi, Pavla Drázdilová, Lukas Hlavacek, J. Martinovič, V. Snás̃el
{"title":"基于容差粗糙集的DBLP数据重叠聚类","authors":"Gamila Obadi, Pavla Drázdilová, Lukas Hlavacek, J. Martinovič, V. Snás̃el","doi":"10.1109/WI-IAT.2010.286","DOIUrl":null,"url":null,"abstract":"In the article there is presented comparison of overlapping clustering methods for data mining of DBLP datasets. For the analysis, the DBLP data sets were pre-processed, while each journal has been assigned attributes, defined by its topics. The data collection can be described as vague and uncertain; obtained clusters and applied queries do not necessarily have crisp boundaries. The authors presented clustering through a tolerance rough set method (TRSM) and fuzzy c-mean (FCM) algorithm for journal recommendation based on topic search. The comparison of both clustering methods was presented using different measures of similarity.","PeriodicalId":197966,"journal":{"name":"Web Intelligence/IAT Workshops","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Tolerance Rough Set Based Overlapping Clustering for the DBLP Data\",\"authors\":\"Gamila Obadi, Pavla Drázdilová, Lukas Hlavacek, J. Martinovič, V. Snás̃el\",\"doi\":\"10.1109/WI-IAT.2010.286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article there is presented comparison of overlapping clustering methods for data mining of DBLP datasets. For the analysis, the DBLP data sets were pre-processed, while each journal has been assigned attributes, defined by its topics. The data collection can be described as vague and uncertain; obtained clusters and applied queries do not necessarily have crisp boundaries. The authors presented clustering through a tolerance rough set method (TRSM) and fuzzy c-mean (FCM) algorithm for journal recommendation based on topic search. The comparison of both clustering methods was presented using different measures of similarity.\",\"PeriodicalId\":197966,\"journal\":{\"name\":\"Web Intelligence/IAT Workshops\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence/IAT Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence/IAT Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tolerance Rough Set Based Overlapping Clustering for the DBLP Data
In the article there is presented comparison of overlapping clustering methods for data mining of DBLP datasets. For the analysis, the DBLP data sets were pre-processed, while each journal has been assigned attributes, defined by its topics. The data collection can be described as vague and uncertain; obtained clusters and applied queries do not necessarily have crisp boundaries. The authors presented clustering through a tolerance rough set method (TRSM) and fuzzy c-mean (FCM) algorithm for journal recommendation based on topic search. The comparison of both clustering methods was presented using different measures of similarity.