{"title":"多模态图像特征的概率融合与分析","authors":"S. Kleinschmidt, Bernardo Wagner","doi":"10.1109/ICAR.2017.8023656","DOIUrl":null,"url":null,"abstract":"In this paper, an approach for identifying corresponding image features across different imaging modalities is presented. The method includes spatial alignment of sensor images on short and long distance as well as a probabilistic fusion approach for combining multiple unimodal to multimodal image features. An experimental statistical comparison of uni- and multimodal image features is performed using RGB, IR and thermal cameras. Therefore, the sensors are mounted on an Ackermann steering platform in a typical industrial environment. The multimodal features are examined regarding repetitive characteristics, quantity and spatial distribution.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Probabilistic fusion and analysis of multimodal image features\",\"authors\":\"S. Kleinschmidt, Bernardo Wagner\",\"doi\":\"10.1109/ICAR.2017.8023656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach for identifying corresponding image features across different imaging modalities is presented. The method includes spatial alignment of sensor images on short and long distance as well as a probabilistic fusion approach for combining multiple unimodal to multimodal image features. An experimental statistical comparison of uni- and multimodal image features is performed using RGB, IR and thermal cameras. Therefore, the sensors are mounted on an Ackermann steering platform in a typical industrial environment. The multimodal features are examined regarding repetitive characteristics, quantity and spatial distribution.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic fusion and analysis of multimodal image features
In this paper, an approach for identifying corresponding image features across different imaging modalities is presented. The method includes spatial alignment of sensor images on short and long distance as well as a probabilistic fusion approach for combining multiple unimodal to multimodal image features. An experimental statistical comparison of uni- and multimodal image features is performed using RGB, IR and thermal cameras. Therefore, the sensors are mounted on an Ackermann steering platform in a typical industrial environment. The multimodal features are examined regarding repetitive characteristics, quantity and spatial distribution.