{"title":"一种结合不同源和图形解释的功能聚类新方法","authors":"Wenlin Dai, S. Athanasiadis, T. Mrkvička","doi":"10.5772/intechopen.100124","DOIUrl":null,"url":null,"abstract":"Clustering is an essential task in functional data analysis. In this study, we propose a framework for a clustering procedure based on functional rankings or depth. Our methods naturally combine various types of between-cluster variation equally, which caters to various discriminative sources of functional data; for example, they combine raw data with transformed data or various components of multivariate functional data with their covariance. Our methods also enhance the clustering results with a visualization tool that allows intrinsic graphical interpretation. Finally, our methods are model-free and nonparametric and hence are robust to heavy-tailed distribution or potential outliers. The implementation and performance of the proposed methods are illustrated with a simulation study and applied to three real-world applications.","PeriodicalId":127371,"journal":{"name":"Computational Statistics [Working Title]","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Functional Clustering Method with Combined Dissimilarity Sources and Graphical Interpretation\",\"authors\":\"Wenlin Dai, S. Athanasiadis, T. Mrkvička\",\"doi\":\"10.5772/intechopen.100124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is an essential task in functional data analysis. In this study, we propose a framework for a clustering procedure based on functional rankings or depth. Our methods naturally combine various types of between-cluster variation equally, which caters to various discriminative sources of functional data; for example, they combine raw data with transformed data or various components of multivariate functional data with their covariance. Our methods also enhance the clustering results with a visualization tool that allows intrinsic graphical interpretation. Finally, our methods are model-free and nonparametric and hence are robust to heavy-tailed distribution or potential outliers. The implementation and performance of the proposed methods are illustrated with a simulation study and applied to three real-world applications.\",\"PeriodicalId\":127371,\"journal\":{\"name\":\"Computational Statistics [Working Title]\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Functional Clustering Method with Combined Dissimilarity Sources and Graphical Interpretation
Clustering is an essential task in functional data analysis. In this study, we propose a framework for a clustering procedure based on functional rankings or depth. Our methods naturally combine various types of between-cluster variation equally, which caters to various discriminative sources of functional data; for example, they combine raw data with transformed data or various components of multivariate functional data with their covariance. Our methods also enhance the clustering results with a visualization tool that allows intrinsic graphical interpretation. Finally, our methods are model-free and nonparametric and hence are robust to heavy-tailed distribution or potential outliers. The implementation and performance of the proposed methods are illustrated with a simulation study and applied to three real-world applications.