太阳能光伏电池模型的venin等效和最大功率传输

Süleyman Adak, Hasan Cangi, A. Yilmaz
{"title":"太阳能光伏电池模型的venin等效和最大功率传输","authors":"Süleyman Adak, Hasan Cangi, A. Yilmaz","doi":"10.1109/ICECCE52056.2021.9514221","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) is the conversion of solar energy into DC electrical energy using PV cells. In addition, solar energy is an important renewable energy source. In this study, it is proposed that Thevenin's equivalent PV cell model produces a voltage-current characteristic that is quite representative of the operation of the PV source. Thevenin's elements depend on ambient temperature conditions, so charging is derived and simplified to construct a model that closely predicts and demonstrates adequate PV cell characteristic for different ambient temperature conditions. This method is very useful for estimating the desired performance and also for examining different Maximum Power Point Tracking (MPPT) algorithms. Theoretically, the simulation was supplemented with test data, then used to develop an equivalent Thevenin model in which the resistance is non-linear and voltage dependent. Thevenin's method and variable pitch is to improve the maximum power transfer to the load by increasing the performance of the PV cell. These methods were modeled and studied in a simulation program.","PeriodicalId":302947,"journal":{"name":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thevenin Equivalent of Solar PV Cell Model and Maximum Power Transfer\",\"authors\":\"Süleyman Adak, Hasan Cangi, A. Yilmaz\",\"doi\":\"10.1109/ICECCE52056.2021.9514221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) is the conversion of solar energy into DC electrical energy using PV cells. In addition, solar energy is an important renewable energy source. In this study, it is proposed that Thevenin's equivalent PV cell model produces a voltage-current characteristic that is quite representative of the operation of the PV source. Thevenin's elements depend on ambient temperature conditions, so charging is derived and simplified to construct a model that closely predicts and demonstrates adequate PV cell characteristic for different ambient temperature conditions. This method is very useful for estimating the desired performance and also for examining different Maximum Power Point Tracking (MPPT) algorithms. Theoretically, the simulation was supplemented with test data, then used to develop an equivalent Thevenin model in which the resistance is non-linear and voltage dependent. Thevenin's method and variable pitch is to improve the maximum power transfer to the load by increasing the performance of the PV cell. These methods were modeled and studied in a simulation program.\",\"PeriodicalId\":302947,\"journal\":{\"name\":\"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCE52056.2021.9514221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE52056.2021.9514221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光伏(PV)是利用光伏电池将太阳能转化为直流电能。此外,太阳能是一种重要的可再生能源。在本研究中,提出Thevenin等效PV电池模型产生的电压-电流特性很能代表PV电源的运行情况。Thevenin’s elements依赖于环境温度条件,因此推导并简化了充电,构建了一个模型,该模型可以密切预测并充分展示不同环境温度条件下PV电池的特性。该方法对于估计期望性能和检查不同的最大功率点跟踪(MPPT)算法非常有用。理论上,仿真与测试数据相补充,然后用于建立等效的Thevenin模型,其中电阻是非线性的且与电压相关。Thevenin的方法和可变螺距是通过提高光伏电池的性能来改善向负载的最大功率传输。在仿真程序中对这些方法进行了建模和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thevenin Equivalent of Solar PV Cell Model and Maximum Power Transfer
Photovoltaic (PV) is the conversion of solar energy into DC electrical energy using PV cells. In addition, solar energy is an important renewable energy source. In this study, it is proposed that Thevenin's equivalent PV cell model produces a voltage-current characteristic that is quite representative of the operation of the PV source. Thevenin's elements depend on ambient temperature conditions, so charging is derived and simplified to construct a model that closely predicts and demonstrates adequate PV cell characteristic for different ambient temperature conditions. This method is very useful for estimating the desired performance and also for examining different Maximum Power Point Tracking (MPPT) algorithms. Theoretically, the simulation was supplemented with test data, then used to develop an equivalent Thevenin model in which the resistance is non-linear and voltage dependent. Thevenin's method and variable pitch is to improve the maximum power transfer to the load by increasing the performance of the PV cell. These methods were modeled and studied in a simulation program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiFi Performance Estimation for Voice Services Feasibility of using Air-conducted and Bone-conducted Sounds Transmitted through Eyeglasses Frames for User Authentication Non-Linear Auto-Regressive Modeling based Day-ahead BESS Dispatch Strategy for Distribution Transformer Overload Management Hot Spot Analysis in Asset Inspections in The Electricity Distribution Area Extreme Learning Machine for Automatic Language Identification Utilizing Emotion Speech Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1