跨站请求伪造作为Web漏洞检测机器学习的一个例子

M. S. Rao, Birudugadda Kalyani, Baswani Vathsalya, Karri Dhanunjay, Alasandalapalli Lakshmi Narayana
{"title":"跨站请求伪造作为Web漏洞检测机器学习的一个例子","authors":"M. S. Rao, Birudugadda Kalyani, Baswani Vathsalya, Karri Dhanunjay, Alasandalapalli Lakshmi Narayana","doi":"10.1109/ICSMDI57622.2023.00080","DOIUrl":null,"url":null,"abstract":"This paper presents a strategy for discovering flaws in web applications through Machine Learning (ML). Web-based applications are especially troublesome to examine attributed to their variety and extensive usage of custom development methodologies. As little more than a basis, machine learning is extremely useful in website safety: It just might combine cognitive knowledge of web app terminology with automated software approaches based on verbally reported information. Mitch tool is the foremost machine learning strategy towards black-box investigation for Cross-Site Request Forgery (C.S.R.F) problems, was built using these principles. Mitch-helped us find Thirty-five recently developed cross-site request forgeries (C.S.R. Fs) in twenty wide fields, together with 3 main C.S.R. Fs in industry applications.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Site Request Forgery as an Example of Machine Learning for Web Vulnerability Detection\",\"authors\":\"M. S. Rao, Birudugadda Kalyani, Baswani Vathsalya, Karri Dhanunjay, Alasandalapalli Lakshmi Narayana\",\"doi\":\"10.1109/ICSMDI57622.2023.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a strategy for discovering flaws in web applications through Machine Learning (ML). Web-based applications are especially troublesome to examine attributed to their variety and extensive usage of custom development methodologies. As little more than a basis, machine learning is extremely useful in website safety: It just might combine cognitive knowledge of web app terminology with automated software approaches based on verbally reported information. Mitch tool is the foremost machine learning strategy towards black-box investigation for Cross-Site Request Forgery (C.S.R.F) problems, was built using these principles. Mitch-helped us find Thirty-five recently developed cross-site request forgeries (C.S.R. Fs) in twenty wide fields, together with 3 main C.S.R. Fs in industry applications.\",\"PeriodicalId\":373017,\"journal\":{\"name\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSMDI57622.2023.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种通过机器学习(ML)发现web应用程序缺陷的策略。由于基于web的应用程序的多样性和定制开发方法的广泛使用,检查它们特别麻烦。作为一个基础,机器学习在网站安全方面非常有用:它可能将web应用术语的认知知识与基于口头报告信息的自动化软件方法结合起来。Mitch工具是针对跨站点请求伪造(C.S.R.F)问题的黑箱调查的最重要的机器学习策略,它是使用这些原则构建的。mitch帮助我们在20个广泛的领域找到了35个最近开发的跨站点请求伪造(C.S.R. Fs),以及3个主要的工业应用C.S.R. Fs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Site Request Forgery as an Example of Machine Learning for Web Vulnerability Detection
This paper presents a strategy for discovering flaws in web applications through Machine Learning (ML). Web-based applications are especially troublesome to examine attributed to their variety and extensive usage of custom development methodologies. As little more than a basis, machine learning is extremely useful in website safety: It just might combine cognitive knowledge of web app terminology with automated software approaches based on verbally reported information. Mitch tool is the foremost machine learning strategy towards black-box investigation for Cross-Site Request Forgery (C.S.R.F) problems, was built using these principles. Mitch-helped us find Thirty-five recently developed cross-site request forgeries (C.S.R. Fs) in twenty wide fields, together with 3 main C.S.R. Fs in industry applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Decentralized Flight Insurance Smart Contract Application using Blockchain Stock Market Prediction using Machine Learning Technique HarGharSolar : Recognition of Potential Rooftop PhotoVoltaic Arrays Using Geospatial Imagery for Diverse Climate Zones. Artificial Intelligence Powered Early Detection of Heart Disease Network Intrusion Detection using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1