M. S. Rao, Birudugadda Kalyani, Baswani Vathsalya, Karri Dhanunjay, Alasandalapalli Lakshmi Narayana
{"title":"跨站请求伪造作为Web漏洞检测机器学习的一个例子","authors":"M. S. Rao, Birudugadda Kalyani, Baswani Vathsalya, Karri Dhanunjay, Alasandalapalli Lakshmi Narayana","doi":"10.1109/ICSMDI57622.2023.00080","DOIUrl":null,"url":null,"abstract":"This paper presents a strategy for discovering flaws in web applications through Machine Learning (ML). Web-based applications are especially troublesome to examine attributed to their variety and extensive usage of custom development methodologies. As little more than a basis, machine learning is extremely useful in website safety: It just might combine cognitive knowledge of web app terminology with automated software approaches based on verbally reported information. Mitch tool is the foremost machine learning strategy towards black-box investigation for Cross-Site Request Forgery (C.S.R.F) problems, was built using these principles. Mitch-helped us find Thirty-five recently developed cross-site request forgeries (C.S.R. Fs) in twenty wide fields, together with 3 main C.S.R. Fs in industry applications.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Site Request Forgery as an Example of Machine Learning for Web Vulnerability Detection\",\"authors\":\"M. S. Rao, Birudugadda Kalyani, Baswani Vathsalya, Karri Dhanunjay, Alasandalapalli Lakshmi Narayana\",\"doi\":\"10.1109/ICSMDI57622.2023.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a strategy for discovering flaws in web applications through Machine Learning (ML). Web-based applications are especially troublesome to examine attributed to their variety and extensive usage of custom development methodologies. As little more than a basis, machine learning is extremely useful in website safety: It just might combine cognitive knowledge of web app terminology with automated software approaches based on verbally reported information. Mitch tool is the foremost machine learning strategy towards black-box investigation for Cross-Site Request Forgery (C.S.R.F) problems, was built using these principles. Mitch-helped us find Thirty-five recently developed cross-site request forgeries (C.S.R. Fs) in twenty wide fields, together with 3 main C.S.R. Fs in industry applications.\",\"PeriodicalId\":373017,\"journal\":{\"name\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSMDI57622.2023.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Site Request Forgery as an Example of Machine Learning for Web Vulnerability Detection
This paper presents a strategy for discovering flaws in web applications through Machine Learning (ML). Web-based applications are especially troublesome to examine attributed to their variety and extensive usage of custom development methodologies. As little more than a basis, machine learning is extremely useful in website safety: It just might combine cognitive knowledge of web app terminology with automated software approaches based on verbally reported information. Mitch tool is the foremost machine learning strategy towards black-box investigation for Cross-Site Request Forgery (C.S.R.F) problems, was built using these principles. Mitch-helped us find Thirty-five recently developed cross-site request forgeries (C.S.R. Fs) in twenty wide fields, together with 3 main C.S.R. Fs in industry applications.