聚类蛋白-蛋白相互作用网络的改进免疫遗传算法

Hamid Ravaee, A. Masoudi-Nejad, Saeed Omidi, A. Moeini
{"title":"聚类蛋白-蛋白相互作用网络的改进免疫遗传算法","authors":"Hamid Ravaee, A. Masoudi-Nejad, Saeed Omidi, A. Moeini","doi":"10.1109/BIBE.2010.36","DOIUrl":null,"url":null,"abstract":"Clustering protein-protein interaction network aims to find functional modules and protein complexes. There are many computational graph clustering methods that are used in this field, but few of them are intelligent computational methods. In this paper, we present a novel improved immune genetic algorithm to find dense subgraphs based on efficient vaccination method, variable-length antibody schema definition and new local and global mutations.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Improved Immune Genetic Algorithm for Clustering Protein-Protein Interaction Network\",\"authors\":\"Hamid Ravaee, A. Masoudi-Nejad, Saeed Omidi, A. Moeini\",\"doi\":\"10.1109/BIBE.2010.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering protein-protein interaction network aims to find functional modules and protein complexes. There are many computational graph clustering methods that are used in this field, but few of them are intelligent computational methods. In this paper, we present a novel improved immune genetic algorithm to find dense subgraphs based on efficient vaccination method, variable-length antibody schema definition and new local and global mutations.\",\"PeriodicalId\":330904,\"journal\":{\"name\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2010.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

聚类蛋白-蛋白相互作用网络旨在寻找功能模块和蛋白复合物。计算图聚类的方法很多,但智能计算方法很少。本文提出了一种基于高效疫苗接种方法、变长抗体模式定义和新的局部和全局突变的改进免疫遗传算法来寻找密集子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Immune Genetic Algorithm for Clustering Protein-Protein Interaction Network
Clustering protein-protein interaction network aims to find functional modules and protein complexes. There are many computational graph clustering methods that are used in this field, but few of them are intelligent computational methods. In this paper, we present a novel improved immune genetic algorithm to find dense subgraphs based on efficient vaccination method, variable-length antibody schema definition and new local and global mutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Binding Characteristics of Human Immunodeficiency Virus Type 1 Glycoprotein120 and Host Cluster of Differentiation4 Using Digital Signal Processing Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies Gene Set Analysis with Covariates A Comparative Study of a Novel AE-nLMS Filter and Two Traditional Filters in Predicting Respiration Induced Motion of the Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1