Daniel M. Kalbermatter, G. Močnik, L. Drinovec, B. Visser, J. Röhrbein, Matthias Oscity, E. Weingartner, A. Hyvärinen, K. Vasilatou
{"title":"黑碳和气溶胶吸收测量仪器对实验室生成的涂覆一定量的二次有机物的烟尘的响应","authors":"Daniel M. Kalbermatter, G. Močnik, L. Drinovec, B. Visser, J. Röhrbein, Matthias Oscity, E. Weingartner, A. Hyvärinen, K. Vasilatou","doi":"10.5194/AMT-2021-214","DOIUrl":null,"url":null,"abstract":"Abstract. We report on an inter-comparison of black carbon and aerosol absorption measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols were generated with elemental to total carbon (EC/TC) mass fraction ranging from about 90 % down to 10 % and single scattering albedo (SSA) from almost 0 to about 0.7. A dual-spot aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardized and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ BC-measuring instruments based on realistic test aerosols.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Response of black carbon and aerosol absorption measuring instruments to laboratory-generated soot coated with controlled amounts of secondary organic matter\",\"authors\":\"Daniel M. Kalbermatter, G. Močnik, L. Drinovec, B. Visser, J. Röhrbein, Matthias Oscity, E. Weingartner, A. Hyvärinen, K. Vasilatou\",\"doi\":\"10.5194/AMT-2021-214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We report on an inter-comparison of black carbon and aerosol absorption measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols were generated with elemental to total carbon (EC/TC) mass fraction ranging from about 90 % down to 10 % and single scattering albedo (SSA) from almost 0 to about 0.7. A dual-spot aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardized and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ BC-measuring instruments based on realistic test aerosols.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/AMT-2021-214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2021-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response of black carbon and aerosol absorption measuring instruments to laboratory-generated soot coated with controlled amounts of secondary organic matter
Abstract. We report on an inter-comparison of black carbon and aerosol absorption measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols were generated with elemental to total carbon (EC/TC) mass fraction ranging from about 90 % down to 10 % and single scattering albedo (SSA) from almost 0 to about 0.7. A dual-spot aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardized and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ BC-measuring instruments based on realistic test aerosols.