{"title":"基于LQR/LQG控制策略的通用航空数字自动驾驶仪设计","authors":"J. Vlk, Peter Chudý","doi":"10.1109/DASC.2017.8102058","DOIUrl":null,"url":null,"abstract":"The paper introduces a description of a Linear Quadratic Regulator (LQR) / Linear Quadratic Gaussian (LQG) controller design along with related basic theory. The LQR/LQG controller of a digital autopilot is subjected to performance evaluation tests, which consider various performance and stability requirements issued by the regulatory agencies. The design's robustness is tested on a General Aviation aircraft simulation model.","PeriodicalId":130890,"journal":{"name":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"General aviation digital autopilot design based on LQR/LQG control strategy\",\"authors\":\"J. Vlk, Peter Chudý\",\"doi\":\"10.1109/DASC.2017.8102058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a description of a Linear Quadratic Regulator (LQR) / Linear Quadratic Gaussian (LQG) controller design along with related basic theory. The LQR/LQG controller of a digital autopilot is subjected to performance evaluation tests, which consider various performance and stability requirements issued by the regulatory agencies. The design's robustness is tested on a General Aviation aircraft simulation model.\",\"PeriodicalId\":130890,\"journal\":{\"name\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2017.8102058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2017.8102058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
General aviation digital autopilot design based on LQR/LQG control strategy
The paper introduces a description of a Linear Quadratic Regulator (LQR) / Linear Quadratic Gaussian (LQG) controller design along with related basic theory. The LQR/LQG controller of a digital autopilot is subjected to performance evaluation tests, which consider various performance and stability requirements issued by the regulatory agencies. The design's robustness is tested on a General Aviation aircraft simulation model.