利用相关特征预测患者特异性癫痫发作

O. Panichev, A. Popov, Volodymyr Kharytonov
{"title":"利用相关特征预测患者特异性癫痫发作","authors":"O. Panichev, A. Popov, Volodymyr Kharytonov","doi":"10.1109/SPS.2015.7168309","DOIUrl":null,"url":null,"abstract":"In this contribution, several classifiers are employed to study patient-specific epileptic seizure prediction quality using intracranial electroencephalogram signal (iEEG) for dogs and humans suffering from epilepsy. New approach to extraction of correlation-based features in sliding time window within the EEG epoch is proposed. Classification performance was evaluated by area under receiver operating characteristic curve (AUC). Influence of duration of time window on results of classification was studied. For epileptic seizure prediction in humans, best classification is showed by support vector machine classifier for time window Tw= 60 sec. (AUC=0.9349); for seizure prediction in dogs, highest obtained AUC is 0.9432 for SVM classifier and Tw= 30 sec.","PeriodicalId":193902,"journal":{"name":"2015 Signal Processing Symposium (SPSympo)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Patient-specific epileptic seizure prediction using correlation features\",\"authors\":\"O. Panichev, A. Popov, Volodymyr Kharytonov\",\"doi\":\"10.1109/SPS.2015.7168309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, several classifiers are employed to study patient-specific epileptic seizure prediction quality using intracranial electroencephalogram signal (iEEG) for dogs and humans suffering from epilepsy. New approach to extraction of correlation-based features in sliding time window within the EEG epoch is proposed. Classification performance was evaluated by area under receiver operating characteristic curve (AUC). Influence of duration of time window on results of classification was studied. For epileptic seizure prediction in humans, best classification is showed by support vector machine classifier for time window Tw= 60 sec. (AUC=0.9349); for seizure prediction in dogs, highest obtained AUC is 0.9432 for SVM classifier and Tw= 30 sec.\",\"PeriodicalId\":193902,\"journal\":{\"name\":\"2015 Signal Processing Symposium (SPSympo)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Signal Processing Symposium (SPSympo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPS.2015.7168309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing Symposium (SPSympo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPS.2015.7168309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这篇贡献中,使用了几个分类器来研究使用颅内脑电图信号(iEEG)对患有癫痫的狗和人的患者特异性癫痫发作的预测质量。提出了一种在脑电信号历元滑动时间窗中提取相关特征的新方法。以受试者工作特征曲线下面积(AUC)评价分类效果。研究了时间窗长度对分类结果的影响。对于人类癫痫发作预测,支持向量机分类器在时间窗Tw= 60秒时分类效果最佳(AUC=0.9349);对于狗的癫痫发作预测,SVM分类器得到的最高AUC为0.9432,Tw= 30秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patient-specific epileptic seizure prediction using correlation features
In this contribution, several classifiers are employed to study patient-specific epileptic seizure prediction quality using intracranial electroencephalogram signal (iEEG) for dogs and humans suffering from epilepsy. New approach to extraction of correlation-based features in sliding time window within the EEG epoch is proposed. Classification performance was evaluated by area under receiver operating characteristic curve (AUC). Influence of duration of time window on results of classification was studied. For epileptic seizure prediction in humans, best classification is showed by support vector machine classifier for time window Tw= 60 sec. (AUC=0.9349); for seizure prediction in dogs, highest obtained AUC is 0.9432 for SVM classifier and Tw= 30 sec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable computing platform for digital pulse compression and digital beamforming Doppler Radar tomography of rotated object in noisy environment based on time-frequency transformation Direct signal suppression schemes for passive radar Voltage tunable bandpass filter IEEE 802.15.4 compliant in-building wireless sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1