H R Eistetter, D J Church, A Mills, P P Godfrey, A M Capponi, R Brewster, M F Schulz, E Kawashima, S J Arkinstall
{"title":"重组牛神经激肽-2受体在中国仓鼠卵巢细胞中稳定表达,偶联多种信号转导途径。","authors":"H R Eistetter, D J Church, A Mills, P P Godfrey, A M Capponi, R Brewster, M F Schulz, E Kawashima, S J Arkinstall","doi":"10.1091/mbc.2.10.767","DOIUrl":null,"url":null,"abstract":"<p><p>Neurokinins are a family of neuropeptides with widespread distribution mediating a broad spectrum of physiological actions through three distinct receptor subtypes: NK-1, NK-2, and NK-3. We investigated some of the second messenger and cellular processes under control by the recombinant bovine NK-2 receptor stably expressed in Chinese hamster ovary cells. In this system the NK-2 receptor displays its expected pharmacological characteristics, and the physiological agonist neurokinin A stimulates several cellular responses. These include 1) transient inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ mobilization, 2) increased out put of arachidonic acid and prostaglandin E2 (PGE2), 3) enhanced cyclic AMP (cAMP) generation, 4) increased de novo DNA synthesis, and 5) an induction of the \"immediate early\" genes c-fos and c-jun. Although NK-2 receptor-mediated IP3 formation involves activation of a pertussis toxin-insensitive G-protein, increased cAMP production is largely a secondary response and can be at least partially attributed to autocrine stimulation by endogenously generated eicosanoids, particularly PGE2. This is the first demonstration that a single recombinant neurokinin receptor subtype can regulate, either directly or indirectly, multiple signal transduction pathways and suggests several potential important mediators of neurokinin actions under physiological conditions.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 10","pages":"767-79"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.10.767","citationCount":"32","resultStr":"{\"title\":\"Recombinant bovine neurokinin-2 receptor stably expressed in Chinese hamster ovary cells couples to multiple signal transduction pathways.\",\"authors\":\"H R Eistetter, D J Church, A Mills, P P Godfrey, A M Capponi, R Brewster, M F Schulz, E Kawashima, S J Arkinstall\",\"doi\":\"10.1091/mbc.2.10.767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurokinins are a family of neuropeptides with widespread distribution mediating a broad spectrum of physiological actions through three distinct receptor subtypes: NK-1, NK-2, and NK-3. We investigated some of the second messenger and cellular processes under control by the recombinant bovine NK-2 receptor stably expressed in Chinese hamster ovary cells. In this system the NK-2 receptor displays its expected pharmacological characteristics, and the physiological agonist neurokinin A stimulates several cellular responses. These include 1) transient inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ mobilization, 2) increased out put of arachidonic acid and prostaglandin E2 (PGE2), 3) enhanced cyclic AMP (cAMP) generation, 4) increased de novo DNA synthesis, and 5) an induction of the \\\"immediate early\\\" genes c-fos and c-jun. Although NK-2 receptor-mediated IP3 formation involves activation of a pertussis toxin-insensitive G-protein, increased cAMP production is largely a secondary response and can be at least partially attributed to autocrine stimulation by endogenously generated eicosanoids, particularly PGE2. This is the first demonstration that a single recombinant neurokinin receptor subtype can regulate, either directly or indirectly, multiple signal transduction pathways and suggests several potential important mediators of neurokinin actions under physiological conditions.</p>\",\"PeriodicalId\":9671,\"journal\":{\"name\":\"Cell regulation\",\"volume\":\"2 10\",\"pages\":\"767-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1091/mbc.2.10.767\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.2.10.767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.10.767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recombinant bovine neurokinin-2 receptor stably expressed in Chinese hamster ovary cells couples to multiple signal transduction pathways.
Neurokinins are a family of neuropeptides with widespread distribution mediating a broad spectrum of physiological actions through three distinct receptor subtypes: NK-1, NK-2, and NK-3. We investigated some of the second messenger and cellular processes under control by the recombinant bovine NK-2 receptor stably expressed in Chinese hamster ovary cells. In this system the NK-2 receptor displays its expected pharmacological characteristics, and the physiological agonist neurokinin A stimulates several cellular responses. These include 1) transient inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ mobilization, 2) increased out put of arachidonic acid and prostaglandin E2 (PGE2), 3) enhanced cyclic AMP (cAMP) generation, 4) increased de novo DNA synthesis, and 5) an induction of the "immediate early" genes c-fos and c-jun. Although NK-2 receptor-mediated IP3 formation involves activation of a pertussis toxin-insensitive G-protein, increased cAMP production is largely a secondary response and can be at least partially attributed to autocrine stimulation by endogenously generated eicosanoids, particularly PGE2. This is the first demonstration that a single recombinant neurokinin receptor subtype can regulate, either directly or indirectly, multiple signal transduction pathways and suggests several potential important mediators of neurokinin actions under physiological conditions.