面向自动化服务组合的学习推荐系统

Alexander Jungmann, B. Kleinjohann
{"title":"面向自动化服务组合的学习推荐系统","authors":"Alexander Jungmann, B. Kleinjohann","doi":"10.1109/SCC.2013.66","DOIUrl":null,"url":null,"abstract":"The as a Service paradigm reflects the fundamental idea of providing basic coherent functionality in terms of components that can be utilized on demand. These so-called services may also be interconnected in order to provide more complex functionality. Automation of this service composition process is indeed a formidable challenge. In our work, we are addressing this challenge by decomposing service composition into sequential decision making steps. Each step is supported by a recommendation mechanism. If composition requests recur over time and if evaluations of composition results are fed back, a proper recommendation strategy can evolve over time through learning from experience. In this paper, we describe our general idea of modeling this service composition and recommendation process as Markov Decision Process and of solving it by means of Reinforcement Learning. A case study serves as proof of concept.","PeriodicalId":370898,"journal":{"name":"2013 IEEE International Conference on Services Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning Recommendation System for Automated Service Composition\",\"authors\":\"Alexander Jungmann, B. Kleinjohann\",\"doi\":\"10.1109/SCC.2013.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The as a Service paradigm reflects the fundamental idea of providing basic coherent functionality in terms of components that can be utilized on demand. These so-called services may also be interconnected in order to provide more complex functionality. Automation of this service composition process is indeed a formidable challenge. In our work, we are addressing this challenge by decomposing service composition into sequential decision making steps. Each step is supported by a recommendation mechanism. If composition requests recur over time and if evaluations of composition results are fed back, a proper recommendation strategy can evolve over time through learning from experience. In this paper, we describe our general idea of modeling this service composition and recommendation process as Markov Decision Process and of solving it by means of Reinforcement Learning. A case study serves as proof of concept.\",\"PeriodicalId\":370898,\"journal\":{\"name\":\"2013 IEEE International Conference on Services Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Services Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2013.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

即服务范式反映了以可按需使用的组件形式提供基本一致功能的基本思想。这些所谓的服务也可以相互连接,以提供更复杂的功能。此服务组合过程的自动化确实是一项艰巨的挑战。在我们的工作中,我们通过将服务组合分解为连续的决策制定步骤来解决这一挑战。每个步骤都由推荐机制支持。如果作文请求随着时间的推移而重复出现,并且对作文结果的评估得到反馈,那么通过从经验中学习,适当的推荐策略可以随着时间的推移而发展。在本文中,我们描述了我们将这种服务组合和推荐过程建模为马尔可夫决策过程的总体思路,并通过强化学习的方法来解决它。案例研究可以作为概念的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Recommendation System for Automated Service Composition
The as a Service paradigm reflects the fundamental idea of providing basic coherent functionality in terms of components that can be utilized on demand. These so-called services may also be interconnected in order to provide more complex functionality. Automation of this service composition process is indeed a formidable challenge. In our work, we are addressing this challenge by decomposing service composition into sequential decision making steps. Each step is supported by a recommendation mechanism. If composition requests recur over time and if evaluations of composition results are fed back, a proper recommendation strategy can evolve over time through learning from experience. In this paper, we describe our general idea of modeling this service composition and recommendation process as Markov Decision Process and of solving it by means of Reinforcement Learning. A case study serves as proof of concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Mashup as a Service: Cloud-Based Mashup Service for the Internet of Things Cloud Service Negotiation: A Research Roadmap Formal Modeling of Elastic Service-Based Business Processes Security-Aware Resource Allocation in Clouds Integrated Syntax and Semantic Validation for Services Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1