基于深度学习的水下鱼类检测与分类

Vrushali Pagire, A. Phadke
{"title":"基于深度学习的水下鱼类检测与分类","authors":"Vrushali Pagire, A. Phadke","doi":"10.1109/ICICCSP53532.2022.9862410","DOIUrl":null,"url":null,"abstract":"The researchers face a difficult problem in detecting and identifying underwater fish species. Marine researchers and ecologists must evaluate the comparative profusion of fish species in their environments on a regular basis and track population trends. Researchers have presented a number of underwater computer vision, machine learning-based automatic systems for fish detection and classification. However, due of the changing undersea environment, it is extremely challenging to find the ideal system for detecting and classifying fish. Because light has such a strong influence in the aqueous medium, conducting research in this environment is difficult. The MobileNet model is utilised to detect and recognise the fish breed in the proposed work. The dataset is preprocessed before the model is implemented in order to obtain appropriate performance metrics. The work is based on the Kaggle dataset, which has nine different fish breeds in total. With a 99.74 percent accuracy, the model can detect and recognise nine different breeds. In comparison to other state of art methods, the model exhibits promising results.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Underwater Fish Detection and Classification using Deep Learning\",\"authors\":\"Vrushali Pagire, A. Phadke\",\"doi\":\"10.1109/ICICCSP53532.2022.9862410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The researchers face a difficult problem in detecting and identifying underwater fish species. Marine researchers and ecologists must evaluate the comparative profusion of fish species in their environments on a regular basis and track population trends. Researchers have presented a number of underwater computer vision, machine learning-based automatic systems for fish detection and classification. However, due of the changing undersea environment, it is extremely challenging to find the ideal system for detecting and classifying fish. Because light has such a strong influence in the aqueous medium, conducting research in this environment is difficult. The MobileNet model is utilised to detect and recognise the fish breed in the proposed work. The dataset is preprocessed before the model is implemented in order to obtain appropriate performance metrics. The work is based on the Kaggle dataset, which has nine different fish breeds in total. With a 99.74 percent accuracy, the model can detect and recognise nine different breeds. In comparison to other state of art methods, the model exhibits promising results.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究人员在探测和识别水下鱼类物种方面面临着一个难题。海洋研究人员和生态学家必须定期评估其环境中鱼类种类的相对丰富程度,并跟踪种群趋势。研究人员已经提出了许多水下计算机视觉,基于机器学习的鱼类检测和分类自动系统。然而,由于海底环境的变化,寻找理想的鱼类检测和分类系统是极具挑战性的。由于光在水介质中有如此强烈的影响,在这种环境下进行研究是困难的。在提议的工作中,MobileNet模型被用于检测和识别鱼类品种。在模型实现之前对数据集进行预处理,以获得适当的性能指标。这项工作基于Kaggle数据集,该数据集共有9种不同的鱼类品种。该模型可以检测和识别9种不同的品种,准确率为99.74%。与其他最先进的方法相比,该模型显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underwater Fish Detection and Classification using Deep Learning
The researchers face a difficult problem in detecting and identifying underwater fish species. Marine researchers and ecologists must evaluate the comparative profusion of fish species in their environments on a regular basis and track population trends. Researchers have presented a number of underwater computer vision, machine learning-based automatic systems for fish detection and classification. However, due of the changing undersea environment, it is extremely challenging to find the ideal system for detecting and classifying fish. Because light has such a strong influence in the aqueous medium, conducting research in this environment is difficult. The MobileNet model is utilised to detect and recognise the fish breed in the proposed work. The dataset is preprocessed before the model is implemented in order to obtain appropriate performance metrics. The work is based on the Kaggle dataset, which has nine different fish breeds in total. With a 99.74 percent accuracy, the model can detect and recognise nine different breeds. In comparison to other state of art methods, the model exhibits promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact on Electrical Distribution Networks with The Integration of Shunt Capacitor Model Using Exhaustive Search Based Load Flow Algorithm A Smart Solar Charge Controller Based on IOT Technology with Hardware Implementation Message from the Chairman, Sree Group Material Properties and Tool selection for Friction Stir Welding: A Review Adversarial Attacks against Machine Learning Classifiers: A Study of Sentiment Classification in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1