无参考的歌唱质量自动评价

Chitralekha Gupta, Haizhou Li, Ye Wang
{"title":"无参考的歌唱质量自动评价","authors":"Chitralekha Gupta, Haizhou Li, Ye Wang","doi":"10.23919/APSIPA.2018.8659545","DOIUrl":null,"url":null,"abstract":"Automatic singing quality evaluation methods currently rely on reference singing vocals or score information for comparison. However singers may deviate from the reference singing vocal to personalize the singing that still sounds good. In this work, we present pitch histogram-based methods to automatically evaluate singing quality without any reference singing or score information. We validate the methods with the help of human ratings, and compare with the baseline methods of singing evaluation without a reference. We obtain an average Spearman's rank correlation of 0.716 with human judgments.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic Evaluation of Singing Quality without a Reference\",\"authors\":\"Chitralekha Gupta, Haizhou Li, Ye Wang\",\"doi\":\"10.23919/APSIPA.2018.8659545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic singing quality evaluation methods currently rely on reference singing vocals or score information for comparison. However singers may deviate from the reference singing vocal to personalize the singing that still sounds good. In this work, we present pitch histogram-based methods to automatically evaluate singing quality without any reference singing or score information. We validate the methods with the help of human ratings, and compare with the baseline methods of singing evaluation without a reference. We obtain an average Spearman's rank correlation of 0.716 with human judgments.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前的自动演唱质量评价方法依赖于参考演唱人声或乐谱信息进行比较。然而,歌手可能会偏离参考演唱声乐个性化的歌唱,仍然听起来很好。在这项工作中,我们提出了基于音高直方图的方法来自动评估演唱质量,而不需要任何参考演唱或乐谱信息。我们在人类评分的帮助下验证了这些方法,并在没有参考的情况下与唱歌评估的基线方法进行了比较。我们得到了与人类判断的平均斯皮尔曼秩相关系数为0.716。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Evaluation of Singing Quality without a Reference
Automatic singing quality evaluation methods currently rely on reference singing vocals or score information for comparison. However singers may deviate from the reference singing vocal to personalize the singing that still sounds good. In this work, we present pitch histogram-based methods to automatically evaluate singing quality without any reference singing or score information. We validate the methods with the help of human ratings, and compare with the baseline methods of singing evaluation without a reference. We obtain an average Spearman's rank correlation of 0.716 with human judgments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epileptic Focus Localization Based on iEEG by Using Positive Unlabeled (PU) Learning Image Retrieval using CNN and Low-level Feature Fusion for Crime Scene Investigation Image Database Privacy-Preserving SVM Computing in the Encrypted Domain Graphical User Interface for Medical Deep Learning - Application to Magnetic Resonance Imaging Statistical-Mechanical Analysis of the Second-Order Adaptive Volterra Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1